
(STARS) WORKSHOP MARCH 24-27 1986U) NAVAL RESEARCH LAS
WASHINGTON DC MAR 86

ACLASS IF ED F/G 12/5 UEhhh~hEEIii

IIEElmEElmmmli

163

11111 I11112.0

11111 1 .1

U I-J LV " -I "V - PTINT - M7P.

laval Research Laboratory

hington, DC 20375-5000 NRL Publication 01 20-51 50.

00
0)S

I Software Technology for
Adaptable Reliable Systems

(STARS) Workshop

March 24-27, 1986

DTIC
ELECTE f

S Ch

0

6 _

Q^ %

7.. ~*

Approved for public release; distribution unlimited.

%b h.-X .,,

0

Software Technology for
Adaptable Reliable Systems

(STARS) Workshop

March 24-27, 1986

Accesionu Fo.

NiS CrA" '4 f

t Unalm ,~~~otfed 'TC IAS l

By

Dist, ibu , ti ,. I

N i I • -

'49

Us Z,; A

Naval Research Laboratory
Washinton, DC 20375-5000

CONTENTS

PR EF A C E ... iv

VISE: A VISUAL SOFTWARE DEVELOPMENT ENVIRONMENT SUPPORTING REUSE
Adarsh K. Arora, James C. Ferrans, and Rob Gordon

A PROTOTYPE SYSTEM TO AUTOMATE THE QUALIFICATION OF SOFTWARE FOR USE
IN A REUSABLE SOFTWARE INVENTORY SYSTEM .. 5

F.C. Blumberg III, C.T. Shotton, Jr., and T. Zyla

INFORMATION THEORY AND SOFTWARE REUSE .. 37
Rodney M. Bond

WHY PROGRAMS BUILT FROM REUSABLE SOFTWARE SHOULD BE SINGLE
PA R A D IG M ... 51

Elaine N. Frankowski

UNDERSTANDING ADA (R) SOFTWARE REUSABILITY ISSUES FOR THE TRANSITION
OF MISSION CRITICAL COMPUTER RESOURCE APPLICATIONS .. 59

A. Gargaro, and T. Pappas

COSMIC - NASA's SOFTWARE DISTRIBUTION CENTER ... 87
John A. Gibson

THE DESIGN FOR REUSABLE SOFTWARE COMMONALITY ... 97
Norman S. Nise, and Chuck Griffin

MSAT BRIEF - NARRATIVE TO ACCOMPANY THE HIGH LEVEL TECHNICAL BRIEF 133
C. Ogden

A CLASSIFICATION SCHEME FOR REUSING SOFTWARE COMPONENTS 155
Ruben Prieto, and Barbara Moore

GUIDELINES FOR WRITING REUSABLE ADA (R) SOFTWARE ... 181
Rick St. Dennis

ALTERNATIVE TECHNOLOGIES FOR SOFTWARE REUSABILITY .. 195
Mark Simos

CREATING REUSABLE ADA (R) SOFTWARE ... 205
Ed Berard

AUTOMATED MEASUREMENT SYSTEM (AMS) ... 297
Karen L. Like

DOD -STD -2167 REV A PLANS .. 355
0. Golubjatnikov

116 tiii

PREFACE

WORKSHOP ON APPLICATIONS SYSTEMS AND REUSABILITY
24-27 March 1986

The Department of Defense Software Technology for-Adaptable Reliable Systems (STARS)
(Project is holding its third workshop on Applications Systems and Reusability 24-27 March 1986

at the Ramada Inn, Oxon Hill, MD.

The intent of this workshop series is to seek sources of information and expertise in the
building of mission critical applications software. Reusable part specification, building, testing,
maintaining and reutilation are of interest. With the promulgation of Ada as a single High

Order Language 6 'f o build future applications within the three DOD services, there exist
new opportunities of reuse of software. Reuse could reduce software system development time
and maintenance costs, and improve reliability. The intent of the workshop will be to present
and discuss summarized material on the following issues:

,I) Specification/Design;
. ,-(2) Reusable Component Definition'

• -(3) Validation of Software Components;
q-f4) Library Experience;

(5) Automated Part Compositior',
.9-6) Logistics of Organizational Reuse of Software and as Government

Furnished Material, and Problems Encountered with Data Rights and
License Arrangements, and User Liability Claims'

9-(7) Encouraging Depositsi 6 --
) (8) Ada Experience.

iv

A011 1 'l l

VISE: A VISUAL SOFTWARE DEVELOPMENT
ENVIRONMENT SUPPORTING REUSE

Adarsh K. Arora
James C. Ferrans

Rob Gordon

Gould Research Center
40 Gould Center

Rolling Meadows, IL 60008

Objectives

The Visual Software Development Environment (VISE) project is part of the Visual Program-
ming Project at Gould Research Center (ARORA8S). The overriding objectives of the Vise Project
are to decrease software development time and improve programmer productivity through the use of
workstation-based, graphical software development environments. Since software development is a
long and complex process, we have chosen to develop tools to aid in the detailed design, coding, and
debugging stages of the software life-cycle.
The major objectives of Vise are to:
(1) Build an integrated, workstation-based software development environment that allows design,

coding, testing, and debugging to occur in parallel without forcing the user to make expensive
"context switche between the editor, the compiler, the linkage editor, and the debugger;

(2) Exploit advanced user interface technology to make programming more productive;

(3) Develop rich libraries of reusable software components which can be intelligently searched for
incorporating components into a developing program; and

(4) Use design information to automatically generate target language code, and to select data struc-
tures and procedural templates.

The accomplishment of these goals would represent a considerable improvement in programmer
productivity and would reduce the duration of the software life-cycle.

Description of Project description. Subsequent versions refine this
Cdescription to successively lower and more
Current software development tools precise decompositions of the problem until

offer little help in mapping the initial abstract the target language is reached. Vise captures
solution of a problem into a target language data types and procedural information from
program. They generally address isolated the later design stages and uses it to generate
stages of the life-cycle. For example, pro- the target language code directly. To support

* gram design languages (e.g., (Teic77) are this, Vise allows a program to contain
used to specify a high-level description of a pseudo-code statements called design notes
program, while syntax-directed editors ease as well as normal target language text. The
the coding task. No general tools exist that programmer can select a design note and ask
assist in the transition from a high-level the system to refine it into target language
problem description to target language source code. After this is done, the refinement code
code. is inserted and the design note becomes a

The first rough draft of a program is comment introducing !he code. Refinement
typically an informal, structured-English is driven by information kept in one or more

Yw1

Software Components Libraries (SCLs). SCL and checked as he makes it. The incremental
organization and refinement is discussed in a compiler keeps an internal abstract syntax
subsequent section. tree of the program in executable form. As

in PECAN (Reis84), we intend to support
Vise will also address testing and geographical display and editing of programs

debugging. Graphical data structure display (e.g., via flow charts and Nassi-
and animation and control flow tracing will be Schneidermann diagrams) as well as textual
used to enhance the programmer's ability to editing. The target- language syntax is aug-
monitor program behavior. Trace and mented to accept design notes in arbitrary
single-step facilities will provide the capability natural language.
of viewing how each program statement
affects a particular data object. The Animator/Debugger is an inter-

preter that walks the abstract syntax tree and

Finally, a long term goal of the Vise executes the program. It supports the typical
project is to incorporate an expert system to facilities of today's symbolic debuggers (e.g.,
aid in automatic data structure selection, control flow tracing, breakpoints, watch-
After asking the user about usage patterns points, stepping) as well as higher-level

and access requirements, the assistant will graphical display of data structures. Control
suggest appropriate data types and give the flow animation is done through the program
rational behind their selection, editing views, as in PECAN.

Vise also contains a help facility and an
Technical Approach Agenda Manager (AM). The AM is used to
T c pkeep agendas of pending items that need to

Ve ibe done. For instance, if the editor finds a
stations using UNIX, C, and Objctive C syntax error, this error is automatically added
sttionshusin UNeaiX Cs and Obetired Cto an agenda for that source file, and
With the decreasing cost of networked, automatically removed when it is fixed. The
single-user workstations, soon it will be prac- user can create his own agendas of re-
tical to equip every programmer with one. winders.
The graphics capabilities of these worksta- inrs
tions make them a logical choice for hosting The final component of Vise is the
a visual development environment. We are Software Component Library Manager
initially supporting the C language, but our (SCLM). We describe its organization and
technology is general and can be easily how it supports design note refinement in the
applied to ADA, FORTRAN, and other next section.
languages.

The Task Environment Manager Software Component Library Manager
(TEM) is the control and coordination layer Software Component Libraries are col-
packaging all Vise tools. It is responsible for lections of reusable software modules along
tracking the environment of a programming with documentation and other supporting
task: which source files belong to it, which information. The SCLM manages these
libraries it references, etc. It is used to libraries and supports browsing and updating
import existing target language files into the operations. Libraries may be organized in
system and export files out of Vise. In the C any manner, both topically and organization-
language implementation, the TEM export ally, and may be owned by anyone.
facility generates the "maken file used to build

- the task with conventional UNIX develop- The major type of component in an
ment tools. SCL is the Abstract Data Type (ADT). This

corresponds closely to an ADA package.
. A syntax-directed editor and an incre- Support also exists for generic ADTs, which

mental compiler form the foundation of Vise. correspond to ADA generic packages. ADTs
The programmer can have multiple edit win- may be derived from generic ADTs, and the
dows open simultaneously on different source user may create instances of ADTs in a pro-
files, and every change he makes is compiled cess called instantiation.

2

SCLs also contain independent func- application of Vise technology. Gould
tions (those that do not pertain to an ADT) Research Center has recently awarded a one
and code templates, along with a hierarchical million dollar contract from LABCOM to
index to them. Documentation, sources, develop a visual VHDL Design Workbench
objects, and preprocessor "include" files are for hardware designers. With the DoD
also available for use or perusal. They also requirement that all VHSIC chips be specified
contain linguistic information needed in using VHDL, an Ada-like hardware design
design note recognition. language, the DoD has initiated work on con-

structing a development environment for theWhen a user picks out a design note VHDL designer. The VHDL Workbench

and asks the editor to refine it into target provides a graphical environment for the

language code, the editor passes the note to speification of hardware components and the

the SCLM. The SCLM uses a simple key- automatic generation of portions of VHDL

word recognition scheme to search each SCL

for matching actions, and the user selects through interaction with this environment.

which one looks most appropriate if more Current Status
than one action was matched. The action
refers to some independent function, code The development of Vise has been
template, or ADT operation function, and divided into three phases. In Phase I we are
the appropriate function call or other target devising the core system: the text editor, the
language code is inserted into the program in incremental compiler, the Software Corn-
place of the design note. The note becomes pohent Library Manager, design note
a comment to the new code. refinement the Task Manager, and the

Agenda Manager. We have six people work-
The user can make refinement very ing on the project and expect to be finished

loose (only one word in the design note by the summer of 1986.
matches a word in an action template) or
very restrictive (the design note must match In Phase II we intend to enhance the
the action template semantics exactly). Phase I components and add the following
When the user picks the desired action, capabilities: graphical program display and
linguistic analysis is used to extract informa- editing methods, new SCLM capabilities,
tion from the design note and insert it into additional SCLs, and the visual
slots in the generated code. Animator/Debugger. This is scheduled for

completion in 1987.
STARS Program Relationship The last phase will explore expert sys-

The Vise Project addresses two major tems technology for data structure selection
goals of the STARS program: It provides and the use of better natural language recog-
software life-cycle support as desired by the nition techniques in design note recognition.
Software Engineering Environment (SEE)
portion of STARS, and also meets the References
requirements for portable and reusable
software parts as specified by the Applications (Aror85) Arora, A.K., Chan D., Ferrans,
segment. J.C., and Gordon, R. *An overview of the

An ADT-based library architecture is Vise visual software development environ-:! ! ment," Proceedings IEEE Compsac85, Chi-
well-suited to the goal of similar applications, cage, IL, 9-11 October 1985, pp. 464-471.
allows parametric refinement of parts, and
supports parts composition. Libraries can run

* the gamut between generically useful and (Reis84) Reiss, S.P. "Graphical program
application- or user-specific. Software development with PECAN program develop-
developers working on an application (e.g., ment systems," SIGPLAN Notices, 19, 5,
signal processing, avionics, missile control, (May 1984), pp. 30-41.
navigation) often use a particular model
when designing systems. The availability of (Teic77) Teichroew, D. and Hershey, E.A.,
software parts corresponding to the model "PSL/PSA: a computer-aided technique for
increases productivity, structured documentation and analysis ofi e py information processing systems," IEEE

The Visual Programming Project also Transactions on Software Engineering, 3, 1,
has under its umbrella a domain specific (January, 1977), pp. 41-48.

g 3

A PROTOTYPE SYSTEM TO AUTOMATE THE
QUALIFICATION OF SOFTWARE FOR USE

IN A REUSABLE SOFTWARE INVENTORY SYSTEM

F.C. Blumberg III
C.T. Shotton, Jr.

T. Zyla

Planning Research Corporation
1500 Planning Research Drive

McLean, Virginia 22102

March 6, 1986

Abstract

In the software engineering environment of the 1980's. the reusability of software is expected to
* be a prime factor influencing the productivity of software development organizations. This paper

discusses a prototype system developed at Planning Research Corporation used to demonstrate the
feasibility of determining the reusability of software which was not originally designed for reuse.

Introduction shown through internal projects within the
Productivity Products Group at PlanningUnder constant pressure to produce Research Corporation, that systems on the

computerized systems of ever increasing size order of 30K + lines of code can achieve re-
and complexity, most large organizations usability rates in excess of 60%, even if the
engaged in software development are forced reused software was not originally designed
to continuously find ways to improve produc- and implemented for reuse. Identifying and
tivity. In today's environment, a software extracting the reused pieces of software from
development organization of any size usually their original libraries was a labor intensive
controls thousands upon thousands of lines and time-consuming process which is
of diverse software, most of which was not intended to be automated by the prototype.
explicitly designed for reuse. Significant time
and cost savings can be realized in most
organizations if an effective means to reuse The development of the prototype
this software can be developed. Clearly, qualification system has also demonstrated

0 some pieces of this software can, in practice, that the benefits of large-scale reuse can be
be reused in applications and systems not magnified by integrating the software reuse
originally envisioned by their designers. The qualification process into a SEE (software
heart of the problem lies in finding an engineering environment). The interactive
efficient way to identify and select the poten- screens, user commands, flow of data, imple-
tially reusable software. mentation techniques, and database storage

techniques used in the prototype system are,
The Prototy Project by design, consistent with Planning Research

Corporation's APCE (Automated Product
In order to gain a better understanding Control Environment) product, the

of how to exploit the potential of this body of corporation's standard software engineering
software, Planning Research Corporation environment. Extending the APCE to
decided to pursue the uavelopment of a pro- include an automated reusable software

0 totype system to qualify software for use in a qualification process is a simple task which
reusable software inventory system. During allows software reuse to occur in an orga-
the development of the prototype, it was nized and disciplined fashion.

5

At the beginning of the prototype records the relationships between the pieces.
development project, it was decided that the
prototype should exhibit the following Because the Analyzer Subsystem is con-
characteristics: structed so that it is driven by a specific

grammar file for the "raw" input software, it
o It should be able to qualify software not is flexible and can accommodate a wide
explicitly designed for reuse, as well as variety of source languages. The prototype
software explicitly designed for reuse. system has been demonstrated to be capable

of processing both Ada PDL and PASCAL
o It should not be tied to a specific computer input software. The estimated level of effort
language; it should be able to accept "raw" required to extend the language processing
input software written in many different capabilities of the prototype is on the order of
source languages. Although Ada is without a a few man-weeks.
doubt the language of choice for future
development, there is a large body of
software written in other languages that can The Qualification Subsystem
be effectively reused. At the time the prototype was

o The qualification process should be adapt- developed, it was felt that the decision mak-
able so that the qualification criteria can be ing process required to qualify "raw" input
adjusted as more is learned about the charac- software for reuse was not fully understood.
teristics of reusable software. Casting the decision making process into a
o Software accepted into the reusable inven- complex, and difficult to change program was

* tory by the qualification process should be not an acceptable or practical approach to the
classified and stored so that it can later be problem. It was obvious that the prototype
retrieved by its attributes, and it must be had to include Al techniques to avoid re-
stored in a manner compatible and consistent compiling or re-linking major pieces of the
with an organization's SEE or software fac- prototype for each change to the qualification
tory system. decision making process.

The prototype design consists of three Figure 2 is an overview of the flow of
major subsystems: the Analyzer Subsystem, data through the prototype's Qualification
the Qualification Subsystem, and the Interro- Subsystem. Metric data, information about
gation Subsystem. Data flows through the the relationships found in the "raw" input
prototype from the Analyzer Subsystem, software, and some user-supplied text data
where "raw" input software is inspected, to are sent through a qualification process con-
the Qualification Subsystem, which makes trolled oy a Planning Research Corporation
decisions based upon the analysis of the "raw" developed Al module called GEM (Generic
input software, to the Interrogation Subsys- Expert Module).
tem, which is used to retrieve selected piece,. GEM is used to apply a set of
of software stored in the reusable inventory, qualification rules against the metric and rela-

tional data supplied by the Analyzer Subsys-
The Analyzer Subsystem tem. GEM determines whether a piece of

"raw" input software is qualified to be stored
A block diagram of the Analyzer Sub- in the reusable software inventory. As the

system is presented in Figure 1. "Raw" input dynamics of qualifying "raw" input software
software can be analyzed whether or not it come into better focus, the rule base can be
was explicitly designed for reuse. The easily modified with re-compiling or re-

* Analyzer Subsystem determines the source linking any software in the entire prototype
language of the "raw" input software and, system.
through the use of a grammar for the source
language, develops metric data from the Rules on the rule base file are written
input. If the "raw" input is a large piece of in straight-forward English-like constructs,
software, for example an entire application and are interpreted dynamically at run-time
program, the Analyzer Subsystem breaks by the GEMA1 module. GEM has powerful

* down the input into smaller pieces and logical operators that allow rules to be

6

developed that can accommodate a wide realized that the prototype system's rule
range of input software sizes and source based could easily be modified to enable the
languages. In addition to logical operators, prototype to be used as a fast and highly
GEM has computational features which allow efficient IV&V tool. With a rule base that
a rule base to be developed that can calculate reflects an organization's fundamental
arbitrarily defined values such as portability software development standards (for exam-
factors, logical complexity factors, and inter- pie, number of lines per module, amount of
face complexity factors. comments, overall complexity per module,

etc.) the prototype system could be employed
As an additional means to cope with the to automate first level software inspections or

dynamics of its decision making process, the walkthroughs which have traditionally been
Qualification Subsystem has interactive performed manually.
screens which allow a user of the prototype
to review decisions made as a result of apply-
ing the rule base to the Analyzer Subsystem's Conclusions
data. Numerical and relational data produced A number of things were learned dur-
by the Analyzer Subsystem relative to any ing the development of the prototype.
particular piece of "raw" input software can be
displayed on command, as well as o Reusability in excess of 60% can be
qualification decisions made by GEM. A achieved, even when the reused software was
simple command from an interactive screen not intended for reuse.
can be used to override any automated deci-

9 sion. o Large-scale software use is best carried out
-- -as an integrated function of a SEE.

As pieces of "raw" input software are

accepted by the Qualification Subsystem, they o A reusability system need not be tied to a
are stored in the reusable inventory along spec;if,; source language
with numerical and relational data produced
by the Analyzer Subsystem. The Interroga- o Some of the problems of automating

* tion Subsystem of the prototype can be used software development standards inspection
r to select the stored pieces of software based and identifying reusable software are similar.

upon various attributes, and can be used to
display numerical and relational data. o Finally, Al tools and techniques can be

applied in harmony with conventional

Reuse and Development Standards software to attack ill-defined and complex
problems frequently encountered in the

An unexpected use of the prototype development of automated software
system surfaced after its development. It was engineering environment systems.

1

N"

,

',',

'RAW INPUT SOURCE CODE
SOFTWARE GRAMMAR

ANALYZER
SUBSYSTEM

COMPONENT COMPONENT COMPONENT COMPONENT

Figure 1. Analyzer Subsystem Block Diagram

8

-v*

0

COMPONENT COMPONENT USES SUPPLIED QLAL IFCA;;CN'
METRICS RELATIONSHIPS COMPONENT RULE BASE

QUALIFICATION
SUBSYSTEM

... REJECTED QUALIFIED DEFERRED

COMPONENTS COMPONENTS COMPONENTS

Figure 2. Qualification Subsystem Block Diagram

9

'4. -...

9

Eho 0

cc
o_ 0

E 0)

n C) (n

00

O 10

a.)

Eoto

CL
E

C 0
CIO)

(nCI
0 -

CD
U. 0

-CIO
CI

0C C l

-n 0i

EE U N0

> >0 "

CI 0 (n

I)IN

00

0 11

cn E m

>0 CI

0O+o o

dZ2

-0 (no
0 - 0,0)

*00

o0-0 (

a. co
0.0

" "

hu (En

mono

cc 00=
cc ~ 0 -ch

0 Em

12 I

a- ~ OC
0 !

0

13

00

n C,, '!

m 0
0 0

0 CL 0
E) % -I.

0(1) 0. C/

N. 0 en C
081 a Q cc

0L CL , o
0 C, co "a O.--

o~c 2..-~

10 0 CU o
0 CL 0 0

0r -0 Q)
0 0 0 ~

-~~ ca u s
.0 15-C0

6,111 00 : 0 Qa
PAN z

-14

i cc

mm

dww

E

15

w

Lu(>C/)

C/)

16

CL -

CDC

CD
CL)

>>

0 0>

0 as Z5

cc E

ca)
a) , a

_
4-7

0 <I

Urn D a.
00

C,,

0.0

czZ0

0 (/)0

zC,
z

w 0

18

0M M

j
0j

N

* 19

z

I-~U)

~~IM

02

E) E
0

E) 0

CD) -

0
a)-0

0~

4% N 0 C ,

cp C
CuC 0- c

E CD< 0 a-

0)a) E- Ca 5
.0 CD~(5 V a

cn An 00

oc o --

a- 0
W -0-
CDC Cc>

4 21

0 C

-0
* m) CL a) -

cr0

0~ 10_

al
"M) a).0 c

0. a).)

0) c
Eu -0 w0

0- Oc.>) C) 0O

.% E L < 0cno
* (n) 0E

>~ E <22

0 0
4E-Z

*D E2 -=

0~ co

Ct: C

0 28 CL C
0 c

W 0

4'> 0 .0

78 CC 6

0 E. c c

CO Cl) Cl

23

VM

00i

A V

X 0

0m 0 a

0 0

@2a

34 x 94 0C

@2 24

EE

.25

zL

z

0 26

,n A

S * 0
0 * 30

N 01

I

I 34

U 34

a xI

C4 u4

34 I27

ILH

N 44

X NIt N

P4 r4

* 3

P4 0

*2

C. m A. -j -. iuW

t44

0 1

I* AA

Ul 2

I %4

a IS

EU IN

2 N 29

00

It H

L600

o 3 1 I

rd X
L64U

34 .4 6
34 L64

ZC 4A (I

lic I4

ini
wA 4

Z 32 I
3 4 HH coo

64 3 *

IA ad aU

~ *A.30

I

I.

*
0*b
0

I
14

0 C fIN u 4

DI II1

to I x

Iwo m

IS 0

14 to

4m a

A 1
A

14M31

'4
lE-

ii

u u

N0
NN iIi I I w k",

N

It MP 4 n ,og. ¢a 0

N U o U U Ul I

N.

0 N N w 1" N I &I

4 " " q -' "' "

IAl ,.i, I

4
N Cal

°u

II
0 N *

at I

M~~N '4~I
Z N U 0QOCO I
~U) M nE *,'4Ix

Il4" 1 14 0

32 I '' N

00

II 0

0I

gUIn

144

54 0 a

a-U I

o4 I

a Iw

ID

*~ M

52 30

An)

-00

CZ .740 E

c CZ 0

a0

'C aDL- 0- c

(D 0
Q= ~ ~ CCz 0

X ~ ~ 0. V

(D cn cn E

U) > CZfl= _ 0 0 c

0 C C

0*a C =(u -0~a ~cz (/) 3

cc 15~ cn)o

*~~~ cml >

34

17,

E

02

-c

0.

0 C .

CZ

000
SIMMO0S 0

0 35

KINFORMATION THEORY AND SOFTWARE REUSE

Rodney M. Bond

ARINC Research Corporation
2551 Riva Road

Annapolis, Maryland 21401

Abstract

In this paoer a paradigm for software reusability currently being researched is reviewed. A gen-
eral discussion of information theory is presented followed by a short discussion of software testing
concepts. Dependency analysis is then presented as a possible approach to unifying these two fields.
Possible paradigms for dependency analysis are then proposed along with some anticipated problems.
Finally, a summary is given which identifies related fields to which this research might be applied.

Information Theory exclusive and exhaustive pair of values, the
*- equation has a maroman ximum value at

Information theory research started in p(xi) - 0.5. Hence the maximum entropy,
the 1920's in support of a need to model or unknown information, for a binary alpha-
communication systems. The basic bet system occurs when there is an equal
mathematical concepts used today were chance of something happening, e.g. being
derived by the late 1940's by mathematicians true or false.
including N. Wiener and C. Shannon. Infor-
mation theory proposes to answer a question
attributed to U.S. political scientist Harold D. Softwar Testing
Laswell(1), "Who says what to whom with During the fault isolation process of
what effect?" In attempting to answer this software testing an attempt is being made to
question, one activity included the develop- obtain information through tests, specifically
ment of a quantitative theory of information the identification of a "faulty' component.
measure(2). Though not the only model, Obviously the meaning, amount, and scope
nor a universally accepted model, one theory of the available information has to be con-
measures "usefulness" of information based sidered in order to achieve identification. If
on three metrics: entropy, self-information, we limit ourselves to a binary scope of infor-

and probability. Entropy, H(e), in informa- mation, such that there are only two possible

tion theory is a measure of the uncertainty values for the information sought, i.e. an M

- associated with a message source. Self- - 2 alphabet, we may arbitrarily choose the

information, I(*) is a measure of the infor- alphabet to consist of the sysbols

mation contained in a particular variable, x; [godbdt We can o te a meain
and probability is a measure of the chance [good, bad]. We can now associate a meaning
accurend o iy ee of the c variable, hnce to these symbols. In this paper "good" and
occurrence of the i(th) variable, p(X). These "bad" will be used to mean the result(s) of a
three measures are related by the equation: test, with no other results possible. Now that

*the meaning and scope of the information to

Eli (xi)] - H(X) - be gathered has been defined, the amount of
the information to be gained from a test

Ep(xj)I(x) - -Ep(x) log (p(xj)) must be determined.

There is a significant variation in the

where the summations are over "M' %,nique amount of information that may be acquired
symbols, E(9I is the expected value lunction, from a test. Suppose that there is a software
and X is a random variable. When M - 2, program with "X" inputs, "Y" modules, and
where the symbols might be represented by "Z" outputs as components. We will also
[0,11, or [true,falsel, or some other mutually assume that the inputs must somehow be

*- 37

generated, and the outputs evaluated. If all program segment.
inputs, modules, and outputs were intercon-
nected, an exhaustive test set would include "i"
on an order of magnitude X*Y*Z* tests. If Call M2 with Bi returning B3
we were to analyze this system to isolate an "'"
error, and assuming a single fault, we might Routine M2
start by testing an input. If the test was Call M 3 returning B4
good, we would have very little information Call M4 with B3 returning B4
gain, only the knowledge that the one input ""

was good. However, if the test was bad we rhe following data and control depen-
would have isolated the error. Conversely, a dencies can be identified. Variable B4
good output test would tell us that all com- depends on module M4 and variable B3.
ponents feeding the output were good, Variable B3 depends on module M2 and var-
whereas a bad output test would tell us only able BI. These are called first order depen-
that one of the components feeding the out- de B y Therece thrst orie B3,
put were bad. The information gain from the dencies. By inference through variable B3,good output test is of more value since it we can also reason that B4 depends on
good utifie testatus of more ofale sincern module M2 and variable BI. This is called aidentifies the status of more of the con- higher order dependency. Through identify-
ponents. ing all dependencies and applying a weighting

Thus it appears that information gain is algorithm, a figure fcr the information
maximized with bad tests near the input and entropy value of each test, here represented

* good test near the output. However, since by a boolean variable, can be determined.
the outcome of a test cannot be ascertained This would then provide values of entropy
prior to the test, current strategies for deter- for our information theoretic approach to
mining the order in which the tests are to be e-ror analysis. For complex software topolo-
performed include random selection, from gies, computer processing will be required for
outputs toward inputs, and from inputs determination of all higher order dependen-
toward outputs. Information theory can be cies. The initial requirement would be the
used to generate a more reasonable strategy. identification of first order dependencies,
From information theory we know that the tests, and modules. This could easily be
maximum entropy occurs in our binary alpha- done manually, or possibly with a simple
bet when the probabilities of "good" and tool. The data may even exist already for
"bad" are cqual. Selection of the test with systems developed with a structured analysis
maximum entropy will paovide an answer to and design approach.
the mst "unknown" information possible
from a single test. Hence our strategy should Paradigm Concepts
be to choose a test that gives the most nearly
equal information gain, regardless of the out- Now that we have identified the theory,

.- -- come, eliminating the most entropy from the one area of application, and an implementa-
analysis. It can be shown that this strategy tion approach to using information theoretics,

* approaches the theoretical limit of eliminating the next step is to relate the presented
half of the components from consideration material to the area of software reusability.
with each test(3). The potential for application covers a wide

spectrum of possibilities.
Dependency Analysis

Reuse Metrics
In order to 'hoose tne test with max-

imum entropy some algorithm for the assign- If we just performed a dependency
ment of information gain must be es- analysis of a software program on any one of
tablished. One approach is a form of depen- several possible dependency relationships
dency modeling. For simplicity of example, such as shared data, execution control, inter-
assume we have four boolean variables: BI, faces, scheduling, etc.; the analysis could be
B2, B3, and 84; and three software modules: used to generate a relative metric associated
MI, M2, and M3 related by the following with that characteristic. The metric is rela-

38

O~

tive because it probably would have no abso- testing(S). Research into the applicability of
lute meaning, but would be very useful in the methods for software testing is currently
characterizing the program. One program being funded internally. Some of the key
might have a shared data metric very high issues to be addressed by this research are: 1)
with respect to another program, both of the identification of what dependencies can
which could be used as a reusable component be generated, 2) the applicability of these
within some other program. dependencies to software related problems

such as fault isolation, reusability, reliability,
Depending on the type and quantity of test development, fault tolerance, and secu-

modifications required, the program with less rity, 3) how the data acquisition for depen-
shared data dependencies may prove easier to dency analysis can be gathered, and 4) how
modify. Similar arguments could be gen- can the problem be structured to minimize
erated for other types of metrics that might processing requirements.
be generated.

Context-Free-Comparisons Summary

The concepts of information entropy
The set of values which represent the and self-information combined with probabil-

dependencies within a program may also ity have been applied to the field of hardware
represent a fingerprint of that system. This testing with considerable success. Research is
fingerprint in general would be free of any being conducted into the extension of this
context description of the program such as work to the field of software testing. There
language of implementation, host computer, is a potential for application of the basic con-
or field of application. Comparisons of these cepts to many other fields of software and
sets of data might be useful in identifying systems analysis. The primary consideration
reusable but abstract concepts such as the ir our approach is that the problem must be
requirements or design of a program. formable as a dependency model.

(-. E3 Methodology

Dependency analysis can be seen to Bibliography

have direct applicability to a Form-Fit- [11 Gordon, G.N. - "Communication', Ency-
. Function (F3) type of methodology(4), This clopaedia Britannica, Vol. 16, p. 686, 1985

" ' is the use of "standard characteristics" for the ed.
specification of requirements. The charac-
teristics could include any aiscussed, or even [21 Shannon, C.E. - "A Mathematical Theory
more complex characteristics based on of Communications", Bell System Technical
advanced algorithms for determining metrics Journal, G23-656,27, pp. 379-423, July 1948
such as "coupling" or "cohesion." This is not

% equivalent to using a "black-box" description [3] Balaban, H. & Simpson, W. -

0 of a program because the dependency model "Testability/Fault Isolation by Adaptive Stra-
,g inzludes the internal workings as well as the tegy", Proceedings: Annual Reliability and

interfaces. To be a complete methodology, Maintainability Symposium, Orlando, Florida,
the "approach" not only would identify the January 1983.
best fitting software for reuse by these

. characteristics, possibly from a library of [41 Boring, G. & Retterer, B. - "Form, Fit,
software; but would also provide insight into and Function Specifications", ARINC

* how or where modifications should be made Research Corporation Technical Perspective
in order to make two programs compatible. Number 16, (1974).

Anticipated Problems [51 Simpson, W.R. - "STAMP Testabilitw and
Fault-Isolation Applications, 1981-1984",

The concepts described in this paper are Proceedings; IEEE International Automatic
S currently being applied by ARINC Research Testing Conference, Uniondale, New York,

Corporation in the field of hardware system October 1985.

* 39

Information Theory and Software Reuse

by

Rodney, M. Bond

for presentation to

STARS Ap~lication Group Workshop

24-27 March 1986

Washington D. C.

0I

Abstract

* Current Research

* Based on Information Theory

* Applied to Software Testability

* Uses Dependency Analysis

w

44
1

0 4U1

Information Theory

- "Who says what to whom with what effect?"

* C. E. Shannon

* Quantitative Theory of Information Measure

o_• Not the only model

* • Not universally accepted

* • Uses three metrics

0 •o Entropy (H}

00o Self-information (1)

*oo Probability (p)

42

M M
• t(×)=E-[I(xi)]=Ip(xi)*I(xi)=-Ip(xi)*l og [p(xi)]

i-! i=1

*o E = expected value function

ooM a number of unique symbols

** X random variable

O For binary system [M=2)1

*o (0,11 [true,falsel (nothing,somethingl

** Mutually exclusive & exhaustive

** p(x i)=0.5 = H(X)max

*o Equal chance * maximum entropy

0 43

Software Testing

*Let M=2, X=[result of test), x 1='good', x2=bad'

INPUTS COMPONENTS DItT

00

1.
C

GodIdcto

God Indication

0 Fraction of test points1.

* 44

* Information gain maximuzed

* - good test near input

oo bad test near output

* Test strategies

S" *. No prior knowledge of test outcome

oo Random

o0 Directed

45

oo Information Theorectic

ooo Select "equal information gain" test

o Answers most "unknowns"

ooo Approaches half-interval limit

Dependency Analysis/Modelin.

module

variable

.I

46Id

* 1st order dependencies

* Higher order dependencies & automation

* Weight to get Information Entropy test value

* Possibly use existing dependency data

47

0

Paradigm Concepts

* Reuse metrics

* • Data

** Control ...

*o 'Characterizing" metrics

* Context-free comparisons

** 'Fingerprint'

** Applicable to abstractions

48

* F3 methodology

*o Use of standard characteristics

*o Not'black box'

*@ ID best fitting software from library

* Provide modification data

4

0 49

Keyv Issues

* Dependencies?

* Dependency applicability to software problems

• Data acquisition

• Minimize processing requirements

* Is the hardware/software translation viable?

050

WHY PROGRAMS BUILT FROM REUSABLE SOFTWARE

SHOULD BE SINGLE PARADIGM

Elaine N. Frankowski

Honeywell Computer Sciences Center
1000 Boone Avenue North

Golden Valley, Minnesota 55427

Abstract

This paper argues that it becomes possible and economical to reuse software only when all the
reusable parts exhibit a single paradigm and suggests that object-orientation is one recommendable
paradigm.

Keywords: Ada, reusable software parts, object-oriented programming.

This research was supported in part by the Office of Naval Research under contract No. N00014-85-
C-0666.

1. INTRODUCTION description language (PSDL) developed by
International Software Systems Inc.(1) We

Honeywell Computer Sciences Center's chose the Symbolics(TM), a Lisp machine
RaPIER (Rapid Prototyping to Investigate with support for dynamic linking, because
End-user Requirements) project is currently prototyping demands a great deal of program
working on a methodology and automated modification at run-time. We expect their
support for constructing and using prototypes Ada compiler, which we will be receiving
to investigate end-user requirements. Tradi- shortly, to exploit these facilities. We have
tional requirements definition methods con- already built two example prototypes using
sistently fail to produce requirements from Lisp flavors as implemented on the Symbol-
which satisfactory systems can be designed ics.
and built [ZAVE85. We believe that rapidly
built prototypes which model critical systems This paper is organized as follows: Sec-
requirements can lead to early consensus on tion 2 discusses three assumptions about
requirements that are acceptable to customers reusing software that underlie the recommen-
and feasible to implement. dation of single-paradigm programs. Section

The RAPIER approach [CSC861 is to 3 presents the reuse process and a critical
tpe fr aroah Arequirement for reusable software. Section 4

build prototypes from reusable Ada software discusses how single-paradigm programs facil-
parts stored in a software database, and to itate the reuse process and support the critical
express them in a very high level language requirements. Section 5 recommends

0 that specifies how the parts are tailored and object-orientation as a suitable paradigm.

interconnected to form a complete prototype. Section 6 discusses future work.
The RaPIER project has the opportunity to

test the feasibility of this approach with non-
product software, in a non-time-critical 2. ASSUMPTIONS
milieu and to test different styles of

* implementating reusable part in this less Our experience in building prototypes
demanding milieu. We intend to experiment by reusing Lisp flavors, and experience
with the approach using Ada on the Symbol- reported in [MATSUMOTO84, KER-
ics and a very high level prototype system NIGHAN841 leads us to make the following

51

assumptions about the activity of software standard kind of input and output, and
reuse and about reusable software parts. that piping can connect these utilities in

a systematic way [KERNIGHAN84]. VON
(1) As a rule, reusable software, especially Unix users build programs out of reus-

reusable code, will be modified each able parts fairly easily because they
time it is used in a program. The sim- understand "how things work."
plest modification is the instantiation of
generic parameters. More general
modifications include enhancing a 3. [HE REUSE PROCESS
software part by adding features, re-
stricting it by hiding features, and There are four steps in reusing a
implementing it using features provided software part, and one crucial requirement on
by others [GOGUEN86]. If software reused parts.
reuse is to be cost effective, Before a part is reused, it must be:
modifications must be done systemati- o Located. A candidate for reuse must be
cally using "hooks' provided by the found among all the reusable parts that are
software part, and not simply by chang- archived in some software database manage-
ing code. ment system (SBMS). The SBMS must

(2) Reusable software parts, especially reus- present users with a lucid classification
able code, must be built for reuse, scheme that appeals to their intuition. Each
either from scratch or by extensive candidate part must be specified in such a

retrofitting [MATSUMOTO84]. While way that the reuser is likely to find it.

it is possible to take code and "massage"
it in order to reuse it, we claim that o Understood. Understanding a part means
what is really being reused is a design, knowing what it does, how it does it, and
and that the massaging constitutes writ- how it can be reused. All these facts must be
ing new code from a reused design. included in each part's specification. "What"
When a potentially reusable part is is the part's function-, "how" its operational
built, its author must consider the fact behavior (for example, its reliability or per-
that it will be reused. This means, formance); "how it can be reused" includes
among other things, that the part its expectations from its environment and the
should provide an appropriate abstrac- interface through which it is modified and
tion, that is, behavior that is general incorporated into the program under develop-
enough to be useful in more than one ment. Specifications can be natural language
program but specific enough so that comments, formal specifications in a language
there is not a large performance penalty such as the predicate calculus, operational
for generality. The part should also specifications in a language such as Prolog, an
provide appropriate hooks for sys- Ada interface description, and so forth. Code
tematic external modification. Other as the only specification is unacceptable.
characteristics of reusable software are Needing to read a part's code because of the
described in [STDENNIS86I which was poor quality of its specification is not desir-
produced by the RaPIER project. able.

(3) Reuse will be most cost effective when Whnteprisbngeudtmste
reusers are familiar with the nature of
the software parts that are available to
them. This does not mean knowing a o Tailored. We assume that modifications

* software part's behavior. No reuser can will be needed. There are two kinds of
be familiar with the behavior of all th"' modifications: (I)I making new entities
parts in a repository, although the locat- (types) from old by modifyirg something
ing process will be quicker if the reuser about the entity: for exampk;, making a
is familiar with the behavior of some binary sort routine from a binary search rou-
candidate parts. What "familiar with the tine by adding functionality to the search; or

* nature of the software parts" means is (21 making new instances of types: for exam-
that the reuser understands "how things pie, instantiating an Ada generic with param-
work." For example, Unix(TM) users eters that particularize it for the program in
understand that Unix utilities expect a which it is included.

52

S0R 1

Changing code is the least desirabi'- way to programs will have to fit the paradigm.
make a new entity or new instance. Code
should be tailored from the outside using We have concluded that programs
"hooks" such as parameters. [GOGUEN86] built from reusable parts should exhibit a
lists eight techniques for constructing new single paradigm at the top (interconnection)
entities from old; none necessitates internal level. That is, the modules that are con-
code modification. nected and the connections themselves

should all be of a single style. Internally
o Connected. After a part is tailored, it is modules could be implemented in a variety
ready to be put together with the rest of the of styles; however, the interfaces they
reusable parts that form the program under present to the reuser should be semantically
development Connection requires build- uniform.
time support in the form of a module inter- One major argument for a single para-

' connection language such as LIL digm is that reusable parts that were not
[GOGUEN86] or PSDL [ISSI86]. Program "made for each other" must work together;
construction is best accomplished in a that is, cooperate to achieve the system's goal
development environment with module inter- while not interfering with each other. This is

connection language-based tools. The more likely to occur when all the reused parts
RaPIER project is developing such an

environment for constructing prototypes, packages, flavors, and so forth. Another
r amajor argument for single paradigm parts is.- There are many requirements for reusable that all programs require run-time support

* software parts [STDENNIS86]; one is crucial: that mlaneu run-time support
i'! and that simultaneous run-time support for

o Insulated from its Environment. A reused multiple paradigms is not usually available.
o s e o s v m A u These same arguments also justify programspart must cause only the effects which consti- composed of reusable parts written in the
tute its documented behavior. It must not be same, multi-paradigm programming language.
a danger to the rest of the program by caus- However, Ada is not a multi-paradigm
ing undocumented effects. It must be built language, and most new, sharable software
not to interfere with any environment in will be developed in Ada. Therefore it is
which it finds itself. Conversely, a reused more practical to recommend a single para-

- part must not allow the environment to digm for all the reusable parts in any program
endanger it. It must not make implicit than to recommend several paradigms imple-
assumptions about its environment that, mented in the same multi-paradigm language.
when violated, will not allow it to function.
It must not be open to uncontrolled We now discuss how single-paradigm
modification of its internal state by its programming aids, to a greater or lesser
environment. degree, in each step of the reuse process

.r. presented in the previous section.

4. PROGRAMS BUILT FROM REUS-
ABLE CODE SHOULD BE SINGLE (1) Locating. The major contributors to
PARADIGM findable parts are good specifications

and an SBMS with a perspicuous
% "A [programming] paradigm is a style classification scheme. A single para-
% of programming, supported by system facili- digm can help somewhat, in that classi-

ties, that provides leverage in a range of pro- fying the same sort of entity is easier
gramming tasks" [BOBROW85]. Some com- than trying to put functions, objects,

0 mon paradigms and languages which support logic routines, rules, etc. into the same
them are: procedure based (Ada), functional classification scheme. In addition,
(Lisp), logic programming (Prolog), object- library management tools can interact
oriented (Smalltalk), and rule-oriented with standard components in a standard
(OPS5). This paper argues that programs manner, allowing more possibilities for
built from reusable software parts will have automation. For example, a tool could

• to exhibit a single paradigm.(l)(2) By impli- more easily produce explanations of
,-cation, the reusable parts that compose such parts' behavior by parsing the parts if

• 53

the parts all follow the same semantic can provide concise primitives for para-
pattern. digm specific things such as message

passing for objects. Thus users have to
(2) Understanding. When users need to write less and, more importantly, to

understand only one sort of thing, they think less since the MIL's primitives
accumulate background about that sort obviate the need to built paradigm
of thing. Thus they know basically how specific capabilities "by hand."
any part acts before investigating it and
need only the added knowledge of pre- (5) Insulation. There are paradigms such
cisely what it does. For example, as the object-oriented paradigm dis-
understanding filters in general means cussed below that, through information
that a user, encountering a filter, needs hiding, provide insulation between parts
to ask only what the filter filters to have and their environment in both direc-
complete knowledge of how the filter tion. In addition, when all parts in a
behaves. When users need to under- program follow any single paradigm,
stand many paradigms, they usually do they are far less likely to interfere with
not accumulate extensive knowledge each other. Multiple paradigms means
about each. different parts have different expecta-

tions of and behavior toward the
(3) Modifying. [GOGUEN86 lists eight environment, which can lead to

kinds of modifications that will produce interference.
new entities from old. When programs
are built from one type of entity, it is
economical to invest in learning how to 5. THE OBJECT-ORIENTED PARA-
supply the hooks for external DIGM
modifications of reusable parts in this
paradigm. The hooks then make it easy The RaPIER project has chosen the
for reusers to modify parts correctly. object-oriented paradigm for its reusable
Even if, in extreme situations, code software parts. Object-oriented program-
must be modified internally, the form ming is the paradigm embodied in Smalltalk
of the code and its general behavior will [GOLDBERG83] and the Lisp Flavor system
be familiar, making it less likely that an [CANNON82]. The concept of an object as a
internal modification will introduce named computational entity with identifiable
errors into the code. When users behavior is central to object-oriented pro-
write reusable code in many paradigms, gramming. An object's behavior is its reac-
they will not have learned patterns for tions to the set of messages it "understands,"
"hooks," and so will make more provi- where a message is a request to initiate pro-
sions of external modification. cessing or provide information, and "under-
Reusers, in turn, will have to use less standing" means call ... denotes an action,

"V well thought out modification facilities and sending a message ... makes a request ...
that are also less familiar to them. [Tihe interpretation of the message is left

e entirely up to its recipient." [RENTSCH82].
(4) Connecting. Two major benefits of sin-

gle paradigm programming apply in this Object-oriented programming can
step. As mentioned above, program- proceed top-down [BOOCH831 or bottom-up.
ming with single-paradigm parts guaran- Bottom-up object-oriented programming
tees that the parts will fit together and begins with a collection of reusable software
that their run-time support can be pro- objects such as the Smalltalk system's objects

* vided. In addition, users will learn pat- or a user's personal library. Objects for the
.- terns for combining parts, thereby problem at hand are built up by combining
V becoming more productive. The con- more primitive (system or user-defined)
" nection step should be supported by a objects. Eventually the system contains the
, program construction environment appropriate objects to solve the problem at

[GOGUN86] that is based on a hand. Then a program that uses these
module interconnection language objects is written, often in a module intercon-
(MIL). If the module interconnection nection language such as CMESA, PSDL or I(
language is tuned to the paradigm, it LIL. Bottom-up object-oriented

0 54

programming is a natural way to exploit a prototype's structure to the user, providing
software repository's resources. The program the structured communication vehicle recom-
under construction can certainly be designed mended in [ZAVE85]. Another benefit of
top-down, but that design will take into objects in the prototyping milieu is that they
account the available resources. localize change, yielding an easily modifiable

prototype. This idea is examined in detail
below.

(1) This does not mean that every program Objects aid the reuse process in the following
must, conform to the same paradigm, ways:
only that each individual program will
be single-paradigm. (1) Locating. [BOOCH83a] motivates an

(2) Some problems should be solved by object oriented design approach by

programs written in languages such as pointing out that

Loops [STEFIK86I, that integrate mul- "No matter what the particular applica-
tiple paradigms. A program in a multi- tion, the problem space is rooted some-
paradigm language offers some of the where in the real world ... in the prob-
same benefits we claim for single- lem space we have some real-world
paradigm programs. objects, each of which has a set of

appropriate operations....

"Whenever we develop a software sys-

Object-oriented programming has tem, we ... model a real-world

specific benefits in the RaPIER setting. One problem No matter what the

important one has to do with the fact that a implementation, our solution space

prototype is a vehicle for communicating parallels the problem space. ... the pro-

about requirements between customers and grammer abstracts the objects in the

product implementers. Traditional black-box problem space and implements the

requirements are difficult to discuss even

among computer specialists, but especially We believe that both locating and
between domain experts who are not corn- understanding reusable parts, is facili-
puter scientists and the computer scientists tated when the parts are the
who are solving their problems. [ZAVE85] programmer's "natural" abstraction.
states that "An.. .important factor in
user/analyst communication is the ability of
the user to grasp and evaluate the concepts objertane A taed o e,

behind any proposal. Experienced systems objects are a natural model of the sort

analysts report that an explicit operational of software component that many pro-

model is much more helpful than black-box grams should comprise. Thus people
requirements." That operational model has reusing them will have some intuitive* structure; it is the structure that facilitates understanding of "how they work" evendiscussion between customers and develop- before studying the paradigm. Objectsers. We conjecture that users interacting (rather than subroutines, data struc-with a prototype will view it as a collection of tures, or general code fragments) areautonomous, concurrent processes, also an appropriate unit to understand

' Although they will not think in computer sci- in detail. They present completehence terms, of objects with lcal state and enough behavior to be understood andmneto s,and of asnchonoustmmun used as units rather than as incompletemethods,a fragments, and to be combined without
tion by message passing, they will think of aitrna m odificon. iTe wrkoonN~q internal modification. The work on

e... collection of processes, modules, or objects, abstract data types (LISKOV75],
each responsible for some part of the
prototype's behavior. And although the Smalltalk [GOLDBERG83], and Fla-

objects from which the prototype is built will vors [CANNON82 bears this out.

not be the same as the objects the user ini- The object's interface is the set of mes-
tially imagines, the builder can elucidate the sages it can handle; each method can be

* 55

specified separately. This is a clean, only establish "wires" for messages to
simple interface: it is specified in small flow across, and provide some means of
enough chunks to be easily grasped; it kicking-off the system. If all objects
describes operations (methods), a name the targets of the messages they
notion that the user is already intui- send, interconnection can be totally
tively comfortable with. Thus the total automated. The model does require
specification presents a complete run-time support for message passing.
abstraction in easily understandable (5) Insulation from the Environment.chunks. ()Islto rm te Evrnet

Objects provide information hiding, not
(3) Modifying. An object is a complete just modularity. No object can manipu-

unit of behavior; if it was built for late another's state except through well
reuse it presents an "appropriately use- defined interfaces, the methods, objects
ful abstraction" (see Assumption B), control their processing by interpreting
and thus the methods it provides will messages, Thus the likelihood of the
not have to be changed. Therefore, environment spoiling an object's state is
modifying an object will mean enhanc- vanishingly small. By filtering their
ing or restricting its behavior; both can requests, objects do not allow interfer-
be done from the outside by adding or ence. Because each object protects
deleting methods respectively. It is itself, interference is prevented in both
good software engineering to consider directions.
all changes to be either enhancements

* or restrictions, and to simply disallow 6. FUTURE WORK
internal changes to code. This is possi-
ble under Assumption B. In order to make the object-oriented' paradigm work in our RAPIER prototyping

The object is a well-understood concept; parim work invgatngpttty e-
reusers who modify it will know its pat- environment, we are investigating these
tern, and be able to modify it in the questions:

pattern. A module interconnection
language can provide primitives for re- o What is an adequate implementation of an
stricting an object's interface. For object/message passing model tn an Ada
enhancing the interface, reusable based prototyping environment.
objects can include some hidden
methods (that is, methods not available o What features of the object model can be
to client software) that can serve as implemented in Ada? We will learn to make
primitives for creating new methods. Ada parts that have as many of the charac-
Hidden methods ensure that teristics of Smalltalk-like objects as Ada can
modifications are correct in that they support and learn how to do without the
present a modifier with the same sort of characteristics Ada cannot support. In partic-

4', "safe" interface that they provide for ular, we shall investigate how to implement
client software. Hidden methods are inheritance sufficiently well to obtain the
one of the investments that can be time and effort savings from making a new
made when writing software for reuse. object out of operations and data structures

(4) Connecting. An object-oriented pro- inherited from parent objects.

gram is, in concept, a loosely coupled
collection of autonomous, concurrently o What are the build-time capabilities

* active objects which communicate by needed to support program construction by

message passing. Each object controls Ada object connection?
its own processing by interpreting the
messages it receives and deciding how o What are the run-time capabilities needed
to handle each one based on its state to support a system of Ada objects?
and methods. This model has
undemanding connection requirements: o What kinds of modifications
the module interconnection step must [GOGUEN86] are necessary to reuse objects

56

--4

and how do Ada objects have to be con- [GOLDBERG83] Adele Goldberg, D. Rob-
structed to allow these modifications to be son. SMALLTALK-80: The Language and
made externally? Its Implementation, Addison-Wesley,

Reading, MA, 1983.

7. ACKNOWLEDGMEENT [ISSI861 International Software Systems Inc.

The author acknowledges many "Prototype System Description Language:
extremely enlightening discussions with Draft," private communication, January 1986.
Curtis Abraham of Honeywell's Computer
Sciences Center who has designed and imple- [KERNIGHAN84] Brian W. Kernighan.
mented two RaPIER prototypes. The ideas "The Unix System and Software Reusability,"
in this paper have benefited greatly from his IEEE Transactions on Software Engineering,
insights into reusability and Lisp Flavors. He Vol. SE-10 No. 5, September 1984, pp. 513-
also read a draft of this paper and recom- 518.
mended several useful changes to it. [LISKOV75I Barbara H. Liskov, Stephen N.
BIBLIOGRAPHY Zilles. "Specification Techniques for Data

Abstractions," IEEE Transactions on Software
[BOBROW85] Daniel G. Bobrow. "If Prolog Engineering, Vol. SE-1. No. 1, March 1975,
is the Answer, What is the Question? or pp. 7-19.
What it Takes to Support Al Programming

* Paradigms," IEEE Transactions on Software (MATSUMOTO84] Yoshihiro Matsumoto.
Engineering, Vol. SE-11, No. 11, November "Some Experiences in Promoting Reusable
1985, pp. 1401-1408. Software: Presentation in Higher Abstract

Levels," IEEE Transasctions on Software
[BOOCH83] Grady Booch. "Object-oriented Engineering, Vol. SE-10 No. 5,September
Design," Tutorial on Software Design Tech- 1984, pp. 502-513.
niques. Ed. P. Freeman and A. Wasserman,
4th edition (Catalog Number EH0205-5), [RENTSCH82I Tom Rentsch. "Object
IEEE Computer Society Press, 1983. Oriented Programming," ACM Sigplan

Notices, Vol. 17, No. 9, September 1982.
[BOOCH83a] Grady Booch. "Software
Engineering with Ada, The [STDENNIS86] Richard St. Dennis. "A
Benjamin/Cummings Publishing Company, Guidebook for Writing Reusable Source
Inc., 1983. Code in Ada(R): Version 1.0," Honeywell

Computer Sciences Center Technical Report,
[CANNON821 Howard L. Cannon. "A Non- CSC-86-3:8213, Honeywell Computer Sci-
hierarchical Approach to Object-oriented Pro- ences Center, 1000 Boone Avenue, Minneap-
gramming," M.I.T. Technical Report olis MN 55427, March 1986.
(Draft), 1982.() 1STEFIK86} Mark J. Stefik, Daniel G.
[CSC86] Honeywell Computer Sciences Bobrow, and Kenneth M. Kahn. "Integrating
Center. "Final Scientific Report to The Office Access-Oriented Programming into a Mul-
of Naval Research: Joint Program on Rapid tiparadigm Environment," IEEE Software,
Prototyping," Honeywell Computer Sciences Vol. 3, No. 1, January 1986, pp. 10-18.
Center Technical Report, CSC-86-3:8213,March 1986. [ZAVE85] Pamela Zave. "The Operational

Versus The Conventional Approach to

fGOGUEN86J Joseph A. Goguen. "Reusing Software Development," Communications of
and Interconnecting Software Components," the ACM, Vol. 27 No. 2, February 1984, pp.
IEEE Computer, Vol. 19, No. 2, February 104-118.
1986, pp. 16-28.

* O57

UNDERSTANDING ADA (R) SOFTWARE
REUSABILITY ISSUES FOR THE

TRANSITION OF MISSION CRITICAL
COMPUTER RESOURCE APPLICATIONS

A. Gargaro
Computer Sciences Corporation

Moorestown, NJ 08057
T. Pappas

Computer Sciences Corporation
Moorestown, NJ 08057

ABSTRACT

This paper identifies fundamental issues relevant to the successful reuse of Ada software in Mis-
sion Critical Computer Resource (MCCR) applications. The reusability of an Ada program is defined
in the context of three criteria for evaluating the degree to which Ada software is reusable. These cri-
teria are important to writing reusable software for the timely transition of MCCR systems to the Ada
Language.

t Ada (R) is a registered trademark of the U.S. Government Ada Joint Program Office

Prologue Approach

A central idea in the design of the Ada Several studies have reported on transi-
language (Departmelt of Defense 1983) is to tioning currently deployed MCCR systems to
assemble a program from independently pro- the Ada language (Friedman 1985). These
duced software components. Therefore, the studies have focused on evaluating the ade-
reusability of Ada software components quacy of the Ada language to meet existing
(STARS 1985) is viewed as the cornerstone performance efficiency requirements and do
in reducing the cost of developing Mission not specifically consider the reuse of transi-
Critical Computer Resource (MCCR) sys- tioned software among different MCCR appli-
tems. If the promise of reusing Ada software cations.
components is fulfilled, the reduction in cost
is expected to be significant (Anderson The results from the studies indicate
1985) that in transitioning to the Ada language,

rigid performance requirements upon the
There is little practical experience in run-time environment will necessitate the use

reusing Ada software components for MCCR of Ada constructs where their level of
applications. In the initial transitions to the abstraction may be comprised by explicit and
Ada language the reuse of software com- implicit dependencies upon the run-time
ponents may be adversely affected by funda- environment. Consequently, developing Ada
mental issues that affect the writing of reus- software that is both reusable and n1keets the
able components. Understanding these performance requirements of MCCR applica-
issues is necessary to managing the transition tions presents a conflict. The conflict is ex-
if the potential costs and benefits of Ada acerbated by programming practices that have
software reusability are to be predicted. exploited idiosyncrasies of the execution

* 59

environment. These practices have resulted made in this paper between the concepts of
in application specific tehniques that are reusability and transportability of Ada
efficient but reduce the level of abstraction software is discussed in the following para-
essential for software reuse. graphs. This distinction partially resolves the

inherent ambiguity of these two concepts and
For example, one requirement that per- is consistent with the notion of both re-

vades MCCR applications is the facility for usability "in the large" and "in the small"
periodic control of both concurrent and serial (Lubars 1986).
processing. Traditionally this requirement
has been satisfied by variations of the Cyclic Program Transportability
Executive which has become the classical
paradigm for examining the efficacy of using The transportability of an Ada program
the Ada language for real-time programming is defined as the ability of a program to corn-
(Hood 1985; MacLaren 1980; Phillips & plete functionally equivalent execution in
Stevenson 1984). Often the adaptation of different environments consistent with the
the Cyclic Executive to provide efficient use Ada language. Transportability is measured
of processing resources can lead to dependen- by the degree this execution can be achieved
cies by the application software on program- without modifying the source code. This
ming techniques that are nonreusable. These definition is derived from an earlier one
techniques may persist after the transition (Oberndorf et al 1982) and work that has
depending upon the implementation of the been previously reported (Nissen & Wallis
Ada Run-Time System (RTS). In under- 1984; Pappas 1985). The stipulation for
standing the issues of software reuse, the equivalent execution rather than identical
ramifications of such techniques must be execution recognizes that the processing
understood to perform tradeoff analysis capacity of the execution environment and
between efficiency and reuse when transition- the sophistication of the compiling system
ing to the Ada language. may affect the execution behavior of the pro-

gram within the semantics of the Ada Refer-
To understand the reuse of Ada ence Manual (RM) (Volz et al 1986). For

software components an approach must example, the number of times a loop body is
address, at a minimum, the issues of writing performed may vary because the source code
efficient code that is reusable in different invites compiler optimization. In addition, it
run-time environments. Particular emphasis does not exclude the use of representation
should be given to: performance efficiency specifications to influence execution since
requirements of MCCR applications as they their use is perceived as essential to most
affect software reuse, program composition MCCR applications.
features of the Ada language that facilitate
the creation and use of reusable components,
and the implementation options of the Ada Program Reusability
RTS that may compromise software reuse. The reusability of an Ada program is
In this paper, the technical foci is directed defined as the ability of one or more of its
towards the latter two topics. components to execute with identical func-

tionality in the construction of a new pro-
ADA Software Reusability gram. Reusability is measured in the degree

that different components of the program can
Software reusability comprises the con- be used to construct new programs in the

cept to execute a program in an execution same and different execution environments.
environment different from that in which it This definition is more stringent than the one
was originally developed, i.e., transportability, recently proposed for developing reusability
and the concept to combine components guidelines (Braun et al 1985) since three
from different programs in the development important criteria for evaluating program re-
of a new program, i.e., reusability. The usability are mandated: the transportability of
comprehensive support of the Ada language the program, the orthogonality, i.e., func-
for modern software engineering principles, tional independence, of its composition, and
viz., abstraction, composition, encapsulation, its freedom from dependencies on a specific
and instantiation, provide a framework for implementation of the Ada Run-Time Sys-
writing reusable software. The distinction tem (RTS). The definition does not

60

discriminate between writing reusable com- Composition orthogonality is not an
ponents and programs where their constituent issue in program transportability since the
components can be reused. entire context of each program component is

transported to the new execution environ-
A necessary first step to reusing corn- ment. It is only when a component is

ponents in different execution environments extracted from its context that composition
is to achieve the transportability of the pro- orthogonality becomes an issue. The excep-
gram. When only the program is to be tion to this is a program whose main subpro-
reused, the distinction between reusability gram has parameters. But in this situation,
and transportability is the fidelity of execu- the context dependency is on the execution
tion, i.e., equivalent or identical. When a context and not the application context.
component is to be reused in different pro- Therefore, the issue is one of transportability
grams, e.g., an Ada generic unit, the tran- rather than reusability.
sportability criteria ensures a context for vali-
dating execution. Degrees of reusability are illustrated in

Example 1, where two versions of a binary
Composition Orthogonality search are shown. Example 1.a, which is typ-

In discussing composition orthogonality, ical of binary searches used in practice, is
it is convenient to introduce degrees of re- weakly reusable for several reasons. First, it
usabiity. A component whose potential for has several context dependencies. Reuse ofrusbil A s comp oe woseak eiale, this example requires providing three entitiesreuse is low is said to be weakly reusable, in the new context: a named number,

* while a component whose potential for reuse
is high is said to be strongly reusable. These MaxTableElements, a type named Ele-

represent the extremes of reusability. Source ment Type, and an array named Table with
modifications and limited applicability are the structure shown. If these entity names or

expected with weak reusability, while with the array structure are not appropriate in the

strong reusability no source modifications and new context, then the component must be

potentially frequent applicability are expected. modified. A second problem with this exam-

An effectively reusable component differs pie is its lack of generality. In addition to
from a strongly reusable component only in only providing a binary search for a particular

that some source modifications may be array, it strongly depends on the array index

required due to Ada language rules. In prac- subtype being a subtype of Positive. This

tice weak reusability is to be avoided, strong dependency is explicit in the Mid-Point cal-
tieareusability istrivoied, forwitheffect usa- culation and in the calculations of the leftreusability strived for, with effective reusabil- and right end points. The dependency is
ity actually oist ined. implicit in the use of zero to indicate that the

The orthogonality of a program's corn- element is not found in the Table. The
position is an attribute of the program which result subtype of the BinarySearch function,
reflects the independence of its components Natural, extends the array index subtype by
from the enclosing context. The stronger a one value to allow it to serve a dual purpose
component's dependence on its context, the -- return the array index upon a successful
less likely its potenti t 1 cuse since !'ore search and indicate failure upon an unsuc-
of the context must be transported with it, cessful search.
i.e., weak reusability is more likely. Con-
versely, the weaker a component's depen- Example L.b illustrates a strongly reus-
dence on its context, the greater the potential able version of the binary search. Here, the
for the component's reuse since little, if any, function has been encapsulated within a gen-

* of the surrounding context need be tran- eric package. Through the use of generic for-
sported with it, i.e., strong reusability is more mal parameters, all context dependencies
likely. When coupled with programming for have been removed. In addition, the param-
generality, striving for context independence eterization in Example l.b encompasses all
will yield effectively reusable, if not strongly possible generalizations of this binary search
reusable, software components. that do not change its functionality.

61

Example I.A - Weak Reusability

Table : array (1 .. Max TableEfements) of ElementType;

function DinarySearch (Element : in Element-Type) return Natural is

Left..Point : Positive :- 1;
Right-Point : Positive :a Max.Table.Elements;
MidPoint : Positive;

begin

while LeftPoint <& RightPoint loop
MidPoint :a (Left.Point 4 RightPoint) / 2;
if Element < Table (Mid Point) then

* Right-Point :a Mld-Point - 1;
vlsit Table (Mid.Point) (Element then

teft Point :- Md-Point * 1;
else

return Mid-Point;
end it;

end loop;
return 0;

end Binary_Search;

62

Example 1.B - Strong Reusability

generic

type Eloesnt.Type is private;
type IndexType is (0);
type Table Type Is array (Index-Type range >) of Element-Type;
with function '(" (Left, Right : ElementType) return Boolean is 0;

package BinarySearchPackageTexplate is

function BinarySearch (Table: Table Type; Element: Element-Type)
return Index-Type;

Not-Found : exception;

end Binary.SearchPackage.Tmplate;

package body Binary.SearchPackageTemplate Is

function BinarySearch (Table: Table-Type; Element: Element-Type)
return Index-Type is

LeftEnd : Index.Type := Table'First;
RigtEnd : Index Type :: Table'iLast;
Mid-Point : Index-Type;

begin

If Table'Last (Table'First then
raise Not-Found;

else
while Lef tEnd < Right-End loop

MidPoint := Index.Type'Val (Index.Type'Pos (Left-End)
4 IndexType'Pos (Right-End) / 2);

if Element (Table (Mid-Point) then
Right End :a IndexType'Pred (Mid Point);

elsif Table (Mid Point) < Element then
Left-End :a index.Type'Succ (Mid-Point);

else
return Mid-Point;

end loop;
if Left.End a RightEnd and then Element * Table (Left-End) then

return Left End;
else

* raise Not-Found;
end if;

end if;

end Binary Search;

end BinarySearchPackageTemplate;

63

While there is no difference between RTS Dependencies
effective reusability and strong reusability in
Example L.b, there are situations where a The potential for RTS dependencies to
difference may occur. For example, consider affect the reuse of Ada program units can be
a generic subprogram implementing a numer- appreciated by reviewing a specific example
ical algorithm such that the algorithm that presents a dependency on a particular
requires a real type. The "real" type is a gen- implementation of task scheduling. This
eric formal parameter of the generic subpro- dependency does not necessarily prevent pro-
gram. If only standard mathematical opera- gram execution from meeting the transporta-
tions are required for this type, then a private bility criterion when the dependency is not
type can be used. The mathematical opera- satisfied in the environment to which the
tions would be generic formal function program is transported for reuse. However,
parameters, with appropriate defaults, to the successful reuse of the program unit that
generic subprogram. If, however, accuracy includes the dependency cannot be
demands necessitate the use of floating point guaranteed in the new environment.
or fixed point attributes, then two versions of
the generic subprogram are needed: one for The example is contrived to expedite a
floating point types and one for fixed point straightforward discussion and the referenced

types. In this case there is a difference code does not represent recommended use of

between effective reusability and strong re- the language or a dependency that cannot be

usability. Both versions are effectively reus- mitigated in some other way. The example
able but neither is strongly reusable. originated from a revision to a program from

the Ada Fair benchmark suite (Bardin et al
One strongly reusable version could be 1985). The original program included pack-

written that would necessitate using a private ages designed to control access to a shared
"real" type. Several additional generic formal variable as a means of evaluating the integrity
subprograms would need to be included as of the task scheduler. In the revised version,
generic parameters, but rather than providing the access control task has been modified to
the user with any real benefit, these subpro- service concurrent reader and writer tasks
grams would simply serve to isolate floating where the access protocol is biased in favor
point and fixed point attribute dependencies, of writer tasks to simulate real-time updating
perform type conversions, etc. While this of the shared variable. The shared variable is
version might satisfy the strong reusability of a composite type and may be read con-
notion of this paper, in reality, users would currently by more than one task providing no
not be likely to use a generic component task has been granted write access. Further-
requiring generic actual parameters merely to more, writing must be serialized and out-
comply with Ada's language rules. standing writes should be serviced before a

task is granted read access, since writer tasks
Components that are effectively or are assigned highest priority.

strongly reusable seem to be consistent with
good programming style so, ideally, all pro- The two code fragments to be examined
gram components should be written in this are shown in Example 2. The first fragment
manner. This would maximize the reusabil- is the select statement enclosed by the task
ity of the program's components. In reality, that grants read/write access. The second
this is not likely to occur since MCCR per- fragment is the timed entry statement
formance issues may dictate otherwise. enclosed by the procedure that is called by
While the binary search in Example L.b may the writer tasks. The dependency is associ-
be strongly reusable, program tuning may ated with the use of the COUNT attribute in

* require a weakly reusable version. In particu- the iteration scheme of the while-loop that is
lar, the distributed binary search due to designed to service all outstanding write
Knuth (Bentley 1982) may be needed in the requests before a new read is accepted.
tuned program. Since the distributed search
could be produced by a program generator it The RM cautions against the use of the
may still be correct to view it as strongly COUNT attribute because its value is not

* reusable, but at the level of a program gen- stable. In this instance sufficient stability is
erator. only required to ensure that the Start Write

64

,

N'

Example 2 - Implicit RTS Dependence

-Task controlling read/write access to shared variable
task body RwControl Is

select
-Activate now reader if no writer is waiting
when Start._rito'Count a 0 a

accept Start-.Read;
Active Readers :a Active Readers 41;

or
-Activate writer If no active readers
when ActivePeaders a 0 Z>

accept Start Write;
accept Stop.Yrite;

or
-Walt for active read to complete

accept Stop..ead;
* Active Readers :x Active Readers - 1;

If Active Readers a 0 then
-Activate and serialize waiting writers

while StartYrite'Count > 0 loop
>>)> Implicit dependency on stability of COUNT

accept Start-Write;
V accept Stap..rltel

"~ ' end loop;
end Mt

or
terminate;

end select;

end Rw control;

-procedure called by writer tasks

* Rw.Sontro I. Startjrite;
-Update shared variable with actual parameter from call

delay WriteTime_4imit;
Rw.Sontrol .Start.Write;

-Update shared variable to indicate that the writer was late
* end select;

* 65

entry queue is not decremented prior to refinement provides insight into understand-
accepting the Start Write entry. This ing issues in writing reusable Ada software
depends upon a class of First-In-First-Out components for MCCR applications. Compo-
(FIFO) task scheduling that prevents interr- sition orthogonality and independence from
uption of control task execution until it is the Ada RTS implementation are identified as
blocked by the StopWrite entry even in the useful criteria for assessing program reusabil-
presence of an expired timed entry state- ity. Understanding these criteria will allow
ment. The dependency requires that expira- varying degrees of program reusability to be
tion of the delay does not result in run-time specified in transitioning MCCR applications
action, viz., changing the state of the delayed to the Ada language. Composition ortho-
writer task, until the executing task is gonality is important because many Ada
blocked and a new task has to be executed. features that facilitate program reusability

have been avoided or unavailable in past
This dependency does not preclude suc- MCCR application software that have com-

cessful execution in a different environment monly relied upon simple constructs with
where task scheduling is not guaranteed to predictable performance efficiency (Bassman
maintain the stability of the value of the et al 1985). In addition, dependencies on the
COUNT attribute. For instance, an RTS that implementation of the Ada RTS to imitate
implements a preemptive class of task low-level control of processing resources can
scheduling may result in the value being thwart strong reusability achieved through
decremented after the evaluation of the composition orthogonality.
while-loop but prior to accepting the
StartWrite entry. However, because of the In managing the transition, software
priority of the writer tasks and the reuse should be safeguarded by balancing
StartWrite entry statement following the program reusability with performance during
expired delay, the number of queued the design phase. Furthermore, reusable Ada
requests cannot decrease. Consequently, pro- software components will be facilitated by
gram transportability is achieved since execu- language implementations that are guided by
tion is functionally equivalent in both the specification of classes of Ada Virtual
environments. Machines for MCCR applications and practi-

cal restrictions on AppendixF of the Ada
When the above implicit dependency is RM. This would increase the likelihood of

not clearly stipulated, the control task may be formally certifying the degree of reuse for
mistakenly considered to be strongly reusable software components (Cohen 1985).
in the new environment on the basis of pro-
gram transportability. An attempt to reuse
the control task with . different procedure for References
writer tasks can have aberrant execution
behavior in an environment that does not Anderson, CM. (1985) Reusable Software-
guarantee the stability of the COUNT attri- A Mission Critical Case Study. AIAA Com-

bute. A simple change to the timed entry puters in Aerospace V Conference, pp 136-

statement that removes the Start Write fol- 139.
lowing the delay can cause the entry queue
count to reach zero. The control task is now Bardin, B. et al (1985) Report on the L.A.
forced to unexpectedly wait at the AdaTEC Ada Fair'84': Compiler Test

StartWrite resulting in disruption to perfor- Results. ACM SIGAda Ada Letters 4, No. 4,

mance since the reader tasks are dependent pp 52-58.
for execution on a write request. This is con-

* trary to the guard specification of the enclos- Bassman, M.J. et al (1985) Evaluating the

ing select statement. In a worst case situa- Performance Efficiency of Ada Compilers.

tion, when no further writes are requested, ACM DC SIGAda Washington Ada Sympo-
the control task is blocked indefinitely from sium.

* execution.
Bentley, 1. L. (1982) Writing Efficient

Epilogue Programs: Prentice-Hall.

This paper has presented a refinement Braun, C. et al (1985) Ada Reusability
to the concept of reusability. This Guidelines. SofTech Inc. . 3285-2-208/2.

66

0%

-Cohen, N. H. (1985) Verified Ada: A Key to Nissen, J. & Wallis, P. (1984) Portability and
Reliable Software. AIAA Computers in Style in Ada: Cambridge University Press.
Aerospace V Conference.

Oberndorf, P. et al (1982) KAPSE Interface
Department of Defense (1983) Reference Team: Public Report Vol. 1. Naval Ocean
Manual for the Ada Programming Language, Systems Center Technical Document 509.
ANSI/MIL-STD-1815A.

Pappas, T. (1985) Ada Portability Guidelines,
Friedman, F. (1985) Issues Affecting SotTech Inc., ESD-TR-85-141.
Software Productivity due to the Introduction
of Ada. Computer Sciences Corp., TR No. Philips, S. & Stevenson, P. (1984) The Role
SP-IRD 4. of Ada in Real-Time Embedded Applications.

ACM SIGAda Ada Letters 3, No. 4, pp 99-
Hood P. (1985) Cyclic Executives: Pros, 111.
Cons, and Relation to Ada. SofTech Inc.,
Working Paper 1123-WPI. STARS (1985) STARS Workshop on Reus-

able Components of Application Software.
Lubars, M. D. (1986) Code Reusability in Naval Research Laboratory.
the Large versus Code Reusability in the
Small. ACM SIGSOFT SEN 11, No. 1, pp Volz, R. et al (1986) Toward Real-Time Per-
21-28. formance Benchmarks for Ada. University of

Michigan.
* MacLaren, L. (1980) Evolving Toward Aoa

in Real-Time Systems. ACM SIGPLAN
Notices 15, No. 11, pp 146-155.

V

,.

* 67

A L.

= 0

0

zz

- z I-
ui 0 L-

- - U
w 2 >

0~0

ccU. 4c I-

-m 0

cm w
- - =i 0

0j0 U2

C.3.

~ -c0

* 68

0 e

C.).
(Z.

cmJ

wi0
c-

0 cc

LI.a

06

z
Cd 2

z dc C.

C.3 71

z 0
-ca

Cd C.2

0 -"

LU C , oc

zL =
U -U <a L

La-LJ
2 L = u

ma 3: wiCaU

I.LI LU LU

mmm LUG = ca

C0 cc CA. 0

z. - X 166
zL L.U

LU cc0 U Z.4

2L LUS

SU L3 0 z z c

ca- CL
~0LU LU. 4 C a 4

-jLU CW 0 L z

4c 2U LU LA

= L= L -
~LU W a

* 70

z

IC43

LU

ca

z

*-i LU

LU = -

-0 LUJ
o 4c ;.

Z QJ LU

LL~ LU 0
0L I- -

-O . LA. >
LUJC3 . LU LUA

*
03

22 LU F
~0 aQO- 0 L.

=A LU B.

71

0 C

-i
C03 L"

CL.

0CJ -.

'-.2
P LU C#3

LUCD-
> = L

C., LU

o C0 L U 0-
ca 0 2 U

C.3 LU C.03 0 L

0 0
LU 0i gm z =

x wc

I--0 C-3
ca- -6 cm

L6 LU Cm,. LU LU

a- C2 C2
-x LU = b LU 0

y3 LU LU3 CL * L zsi
C. I. LU0

C03 LU LAA L _5 I

* U =U- LUw

* 72

LLI kI

~.j

LALI

AUCA
z

ci

0

4 73

PW ! 11 5 1 1111 ,0 1

C IA

LU 2LU LLS

CJC3

o D

cm C.3 o j

CL LU. 4c 0 CA -L

-LJ IC0 u.= CL~

G3L U. 2j
~~~LU U6 -~ U

'IC LLJ0 -

I- C LU ULU 0 U

CA3 ca LU

-c Co = 0~ Ur

C03 ~LU = OC
U6 meI U-

Lu

740



I- 0

I-mc

a.L

ccc

LL 7-

Nr0



ZLUEca z

z LU

2c 0

C. U

-aa
LU I--- C.

0 -. Lu

C1m LU

I- L- LU a-

I- "1-

t =i
LU 2 I

LU 0

I- 0 -jz

0 76



zz

ca

z 0

0J Z

Om 0JC L A

-L Z = I

I- ~ 1 LU-I'-LL E~z ~ ujZ~z Z

IvkL

N L&.LLU 77



0z

L6.

Iz LU

00 0 4~
LU CLo I

z -LU

L a _a - -

00 0~
t C.0 C02 .

=6 4c z
I-j =~j

CO) C.2 z LU CCS

= -. > =>

cc caa Z WU

j = L 4

om Z (4-LUd C

ina LUU LU=

P I&JL .
0 ~ ~ ~ ~ 'I- U 3C

M LAJ
0C wC4,2 = 'Z U

= OC >
PLU .= ujZ

016 LU aC0 U -
cow 4c zz U.

Q6 11 CIO Cl
CJM-

cc 'VP-ui



UU

cn= S
0 IlI

2.. 21.t= Ca.

I D .. .. 2
=- I- co

CL I CL -0 L 1
- r

0 =IS

S ~ .- .79



CID 0,

a Z.

E I-

I~ I .-

AL CL1 -
C- + - 0 0 A .

-: a0 a a

W ; = As
x Ij

X .0 LL..'

C. M.a& .

IIM a I CE x

* a

Z V1 1 I3~ 5. 80



0L

Sc

L" cc

uj0

QI-

E
A 10" 0 F!

c

!2 CL.
I1I bw0

I- 140 C II-
CL 1w -o

-0 U. I-@2

cn a.

=Oj z
(a@

aU
@CL *51

a. @281



00

C0

C.4.

LGuJ
LUJ

C4CJ
Iz

LU LuL

LU =U

NL LA.

cc U

0 OLL=

-j z cIJ

LL..1 cmi'-
...J C.3

~JCIJ
0 Ci

C02 2j F LC.)

-LUF F UL
ci > c

I~L C13-)I

Wgj WL l i-

L600

CLU L& = ci pLL
0 0 0

'C.3

S...
'S 

c c

0 82

-. .P P '" ,



00

a 6

L

=8



00

AMl

c2

cc C4 -

CA 0

a a

,'-:," , - "
CL A

ICL

%84

,.-- 
-

*

U ,UU

_ _ U* sa



Ca ;.

LU L3

0a LUILUJ
- - LU -j LUJ

C03 ca
LU C02 GLU

LUJ 0

caL&U 0 C02

LUC13

-' C.) < -j L&J

CL.~
j g AJ, LU L

-LI C. 0t = .

=a ==
ZLL ZU- C

zz ZL
wn CAI 0j -

-~L CACJ&

~ LU..

P. . 0 i Z LZ

LU a.0

(JJU uss 240
C* U

0J 0

* 85



4

COSMIC - NASA's Software Distribution Center

John A Gibson

COSMIC
Computer Services Annex

University of Georgia
Athens, GA 30602

Abstract

NASA and the University of Georgia established the Computer Software Management and
Information Center (COSMIC) to collect and disseminate computer software developed by NASA and
its contractors. The current COSMIC inventory of over 1100 programs is available for business,
industry, educational institutions, and government.

Text graphics, mathematics, communications, and
thermodynamics broaden the scope of pro-

The Computer Software Management grams in the inventory. Many of these pro-
and Information Center (COSMIC) was es- grams can be directly applied to secondary
tablished by NASA and the University of use with little or no modification. Other pro-
Georgia in 1966 to function as a software col- grams can be adapted for a very specific pur-
lection center and to provide dissemination pose at substantially less than the cost of
service for computer software developed by developing a new program. COSMIC sup-

, NASA and its contractors. COSMIC has plied the source code with each program so
received and processed nearly 5000 computer that its capabilities can be modified or
programs since its beginning. Currently over extended as needed.
1100 programs in the inventory are supplied
to business, industry and educational institu- The COSMIC customer service staff
tions as well as to other government agen- provides assistance to users in locating pro-
cies. Programs are priced at a fraction of grams or groups of programs that best meet
their original development costs. the user's needs. This customized search by

Each new computer program and docu- the COSMIC staff is provided at no charge to

ment and each update received from NASA the user. The COSMIC staff is trained to

and NASA contractors is screened and assist users in locating software and will assist

evaluated for completeness and application in locating specific public domain software

potential before being added to the inventory, packages even if they are not part of the

This process involves checking for syntactical COSMIC inventory. For users who have a

accuracy through compilation and/or assem- general interest in software or for broad

bly on a host of systems available at the application needs, COSMIC publishes the

" University of Georgia. Each program is COSMIC Software Catalog. This annual pub-

assigned appropriate subject category codes lication is a comprehensive collection of pro-

and index terms before an abstract is gram abstracts, organized into 75 subject

prepared and the program is made available categories and includes a keyword index and

* to the public, an author index to aid in the location of pro-
*, grams.

The software submitted to COSMIC

reflects the varied activities of NASA which Our users provide the best examples of
involve basic research and development pro- how NASA software is used. These exam-
jects as well as projects directly related to pies include: 1) using the application package
space missions. Software developed in such essentially as-developed for a similar applica-
areas as structural mechanics, computer tion in industry, 2) converting the application

4 87

............



package to operate on a different machine, 3) the software to the user. Do all your screen-
and taking related routines from one package ing, testing, quality assurance, performance
and applying these routines in a different measurements, etc., before the software
package. COSMIC's service includes distri- officially becomes available from the library.
bution of programs and documents between Define the technical or user support available
NASA centers, so our users include many for each item in the inventory. Last, but not
NASA staff members. Approximately 25% least, obtain information from users that
of COSMIC's distribution involves the reflect the benefits they realized from using
transfer of software to NASA centers and the software.
contractors for reuse on NASA projects.

In 20 years of experience operating The actual utilization of the library as a
NASA's software distribution center, place to submit software as well as a place to
COSMIC has had many opportunities to obtain software will depend on your ability to
learn. The lessons we have learned cover market your services. Our experience shows
many of the items mentioned in the that this effort, both to obtain software and
workshop announcement letter under "library to promote the use of software, is a continu-
experience" and "logistics of reuse". The best ing effort that involves significant resources
advice I can give your library committee is to of staff time and money.
keep the number of rules, directives, restric-

- tions and paper work to a minimum. Make it The concept of a single source of com-
easy to put programs into your library. Make puter software, whether routine or application
sure that your staff will be friendly and help- packages, is not new. NASA has 20 years

0 ful in locating software for.a user. Make sure experience in operating such a facility,
* you have an efficient system for transmitting COSMIC, at the University of Georgia.

• 88

,- . - " , . . i. . . ..a . .. . . ." " ' ' " ' ' ' ' . . ' ' e ' s '



COSMICe

* NASA'S COMPUTER SOFTWARE MANAGEMENT

AND

INFORMATION CENTER

89



NlASAn
National Aeronautics and
Space Administration

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . to the expansion of human knowl-

S, edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

900 , ... ..



COSMIC ACTIVITIES

1. Technical Screening

2. Promotions

3. Order Processing

4. User Support

-- 5. NASTRAN Maintenance

6. Benefits Analysis

0 91



HARDWARE AVAILABLE FOR PROGRAM CHECKOUT

CDC CYBER 205
CDC CYBER 845

CDC CYBER 850

IBM 3081

DEC VAX 11/780

UNIVAC 90/80

MICROCOMPUTERS

iI I
92

0•



DOCUMENTATION REQUIREMENTS

Problem / Function Definition

Method of Solution

User Instructions

Implementation Instructions

Sample Input / Output

Environmental Characteristics

Other Appropriate Information

I,9
03'0

93
0 - .



CLASSIFICATION OF PROGRAMS

t Excellent quality program. Qualifies
as Tech Brief. Must be NASA funded.

° II Program and documentation meet
publication standards.

Iii Programs returned to the submittal site. |

IV Programs and documentation which are
incomplete and additional information
has been requested.

0

94

0,ll



PRICING FACTORS

Machine independence and / or vintage

Level of programming or maintenance support

Quality of supporting documentation

Program sales potential or history

Program functionality

Program size

95



COSMIC PERCENTAGE DISSEMINATION
BASED ON DOLLAR VALUE

1984

DOCUMENTS

CATALOGS 55

PROGRAMS

NASA

5%

LICENSE

-38%

'S-96



129 SOVTWER TECHNOLOGY FOR ADAPTABLE RELIABLE- SYSTEMS -- /4
(STARS) MORI(SHOP MARCH 24-27 1986(U) NAVAL RESEARCH LAB
WASHINGTON DC MAR 86

UNCLASSIFIED F/G 12/5 U

smmhEmohhhh
EhhhhhhhhhhhE



BH~L 4.036

II1.25 1lW111.4

UMICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A



THE DESIGN FOR REUSABLE
SOFTWARE COMMONALITY

Norman S. Nise
Chuck Griffin

Rockwell International

Abstract

This paper discusses the design of software packages to improve their degree of reusability. The
degree of commonality both across applications areas and within applications areas are tied together to
form a commonality matrix against which software packages can be measured for potential reuse.
Further, design techniques to improve commonality are explored. Emphasis is placed upon designing
software with the widest domain of applicability in order to realize the financial benefits of reusable
software.

Introduction and used as part of a larger project. Reusable
software will cause a reduction in manhours

By now it is a well known fact that the required for the design, development, testing
demand for software is increasing dispropor- and maintenance of software.
tionately to the supply. More specifically, the
demand is increasing at a 12% rate compared Two major factors have prevented the
to an increase of only 8% for software supply, idea of reusable software from becoming a
The problem is exacerbated by the fact that reality. The first was the proliferation of
software costs are also rising - astronomically. computer languages. It would have been a
The United States Department of Defense difficult task to keep and catalogue software
estimates that software costs will rise to $32 over the domain of many languages. With
billion per year from a modest $2.5 billion in the developme.t of Ada along with the
1980. DOD's decree that Ada will be the higher

level language for all embedded systems, the
Software development methods have outlook for the future is a single, widely-used

contributed to the software economic prob- language that can be used to develop and use
lem through maintenance costs that represent reusable packages. Ada itself was designed to
50 to 80 percent of the total cost while design be used for the development of reusable
and development are only 20 to 50 percent of packages.
the cost. These methods have also resulted
in code that is difficult to modify, contains The second factor has been proprietary
errors, and is produced with low productivity, interests on the part of software developers.

There was the fear of not realizing maximum
The DOD and its Software Technology profits if software was shared among other

for Adaptable Reliable Systems (STARS) ini- members of the industrial community.
* tiative have already begun to study ways to Developed software was hidden and not

alleviate the above described problems. shared. STARS is now looking into this
problem by trying to establish incentives to

One promising solution to the software develop and use reusable software.
problem is reusable software. Reusable
software includes reusable requirements, We can envision, some time in the
specifications, design, code, documentation, future, a reusable software library where
etc. It can be used between applications with software "parts" are cataloged and available
little or no modification. It can be imported for use within larger programs.

Ada is a registered trademark of the United
States DOD, Ada Joint Program Office.

0 97

r 1A~RIS15 

II



Commonality software will exist and maintenance costs will
increase.

One of the factors that will determine
the success of a library package will be the If a software package is classified as
degree of reuse. The more times a software application specific, the likelihood of the
package is used, the more we can rely on a package being applied outside of that domain
reusable software system to solve the will be small. For example, software
economic problems previously described, classified as being in the domain of account-
The degree of reuse depends upon the ing, will be used only for accounting. That
domain of applicability of that software. That package will not be used for missile systems.
is to say, can that software package be If the package contained sort routines that
depended upon to be used many times? If could be used outside of the domain of
the software has wide applicability, either accounting, the savings would not be realized
across many different applications or wide in this case.
applicability within a single application, the As reusable software libraries are es-
answer probably will be affirmative. tablished it is imperative that software placed

The amount of reuse to which a module into these libraries be designed with as large
is put through is dependent upon letting the a domain of applicability as possible.
user know of its existence and the domain of
its applicability. Thus, it will be important For example, a routine to add two

for the designer of the package to give to that objects together could be very specific and be

package the attribute of maximum applicabil- applicable only to integer numbers. Other
ity and properly classify that package as to its packages would then have to developed for

-4. range of application. Again, the designer floating point numbers, fixed point numbers
, must not only build the attribute of wide and the like. Each package will have dimin-

applicability into the package, but also must ished reuse and each package will multiplyapplmmicat hisatto the packagebu of the the costs of development and maintenance.communicate this attribute to the user We cannot overemphasize the fact thatlibrary, library package development use every tech-

It is obvious that several pitfalls can be nique possible to extract, up front, from a
encountered that will diminish the economic package the maximum amount of reuse. To
benefit to be accrued from the use of reus- assume application specificity when in reality
able software. wide domain applications can be obtained is

to defeat the gain to be realized from reus-
(1) wide applicability is built into the A able software.

package but that attribute is not com-
municated to the user through. the Let us first take a look at a classification
library classification system, system to describe the commonality of

" software parts.
(2) a package is designed that has wide

11 applicability over a narrow field of appli- Classification System for Commonality
* cations but could have been designed to

cover other application areas, Application software reuse can be mea-
sured across two domains:4 (3) a package is designed that has narrow

," applicability but could have been (1) within an application area
designed to have wider applicability
either over a single applications area or (2) across application areas

* over many applications areas. By applications area we mean a distinct
industrial grouping. For example, different

Thus proper design and classification up applications areas could include missiles, air-
front is imperative. Narrowing of the field of craft, spacecraft, weapons, ships, lasers,
applicability will lead to the proliferation of command/control, radar, etc.
modules with the resulting increase in cost
along with the unneccessary complication of Software that fulfills a high degree of
the reusable software retrieval system. More reuse in any of the above domains is a good

98

!7 1'
SMI

-4 .



candidate for reusable software. Since our s/w design ........... 4
objective is to design software packages that slw development ....... 4
will yield the maximum amount of reuse, the s/w verification ......... 4
design process should explore the possibility mission functions ....... 2
of expanding a package designed for a specific input routines ............ 2
applications are to a package that is reused output routines .......... 2
across many applications areas. Again, the system functions ........ 0
cost of not looking carefully into this possi- warhead control ......... 0
bility and filling a reusable software library system inputs ..... 0
with an ekcess of application specific software system output ............ 0
packages could cancel some of the benefits
that would accrue to a reusable software sys- This matrix can be used then to orient
tern. us in the design of reusable packages. Our
We can then think of commonality matrix design objective is to improve the packages'
that has two dimensions: commonality index. Let us now take a look

at techniques that can help us meet our goa!
(1) degree of commonality across applica- of increasing a pacKages' commonality index.

tion areas
Reusable software will be designed

(2) degree of commonality within an appli- using Ada with its attributes of information
cations area hiding, modularity, and generic packages. In

order to improve the commonality index of
This matrix is shown in Figure 1. Each an Ada software package, we want to strip

square of the matrix suggests a relative value away those parts of the package that contrib-
for software package commonality. The ute to a narrow degree of applicability. Fig-
higher the index, the greater the domain of ure 4 shows a package divided into its appli-
applicability that is predicted. The scale goes cation specific parts and its application
from 0 to 6 with 0 yielding the least corn- independent parts. Here we are dividing the
monality and 6 yielding the most. package into three main divisions; (1) input,

As an example, Figure 2 suggests a pos- (2) process, (3) output,

sible classification of software for a spacecraft
application specific area. This classification We can assume that the package of Fig-
then classifies the given software according to ure 4 would not be a good candidate for reus-
the vertical direction of Figure 1. In Figure 3 able software across application boundaries
the same software packages are classified because of the application dependent parts.
according to the horizontal direction of Fig- If the application dependent parts are
ure 1. If we locate the intersection of each removed, the remainder of the package could
package on Figure 1, we can determine the possibly be engaged in heavy reuse.
commonality index. We now list each pack-
age and its commonality index: Two ways exist to solve this problem.

sorts ........................... 6 The first way would be to create application
data structures ........... 6 dependent packages consisting solely of theabstract procses ....... 6 application dependent parts of the original
computer system ........ 6 package. This concept is shown in Figure 5.
s/w maintenance ........ 6 This technique would create two library pack-

-wmath functions ........... 5 ages. One package would have a high degree
geometric functions....5 of commonality and reus he a the other

0 matrix functions ........ 5 package would have a low degree of co-
vector functions ......... 5 monality and reuse.

process functions ........ 5
communications ......... 5 A second technique would be creation
guidance functions ..... 4 of generic packages that would be instantiated

•navigation with the application dependent parts as shown

twemetric functions...4 in Figure 6. Here the only library package is

0 99

" ,Pit



the generic packages. The generic packages This example shows that with proper
would have the most reuse across applica- design, reusable modules can be created from
tions boundaries. The instantiator is not a non-reusable modules by separating the appli-
library package, but rather is a software cation specific parts and creating generic reus-
module created for an application specific able modules.
function. Its reuse would not be great and it
would not be placed into the reusable Summary
software library.

This paper has presented several con-Figure 6 shows the input, process, and cepts relating to the design of software pack-

output within the same package. It might be ces wit the esign of highwreusack-

preferable to keep the input, process, and ages with the attribute of high reusability.
opuebto in eepte diinct prcaes. Fr Specifically, we showed that the degree ofoutput in separate and distinct packages. For commonality of a module must be measured

this case, the instantiator procedure would bothnwitin a speifi apitonsmared

require sequencing in order to instantiate the

input, process, and output packages in the across many application areas. A matrix was

proper order. presenteA with which to evaluate the com-
monality of modules across both domains.

Example Two techniques were presented for
improving the commonality of software pack-

As an example, consider the software ages. The first technique suggests separating
represented in Figure 7. This software application dependent parts from application
checks inputs for limits, ranges, and, in the independent parts. The application indepen-
case of discrete inputs, desirable states. The dent part becomes a reusable package.
outputs from the software are various mes-
sages along with scaled inputs. The second technique creates a generic

package that is instantiated with application
This module thus contains much in the dependent parameters. The generic package

way of application specific software and becomes the reusable software package while
tables. It contains limits, scale factors, mes- the instantiator is developed for each applica-
sages, and the like. This package would not tion and is not a reusable software package.
be considered to be reusable. Why, every
application would require a reconfiguration. Acknowledgements

In order to make this package reusable, The authors wish to thank Keith Morris
the non-generic parts can be removed. A Teatosws otakKihMrithe on-enerc prts an e reove. A for his invaluable input in the preparation of
generic module that does the checking, scal- fhis ial pr a
ing and data output can be writrten. The this paper.
reusable module would contain just the pro- McCain, "A Software Development Metho-
cess. The data can be acquired from other dology for Reusable Components", STARS
modules that are application specific. Workshop 1985 Reports.

* Figure 8 shows the generic module
used for checking, scaling, and the outputting McNicholl & Anderson, "CAMP Preliminary

, of messages and scaled data. Other applica- Technical Report", STARS Workshop 1985
tion specific modules handle conversion to Reports
common data types and contain tables of
ranges, limits, scale factors, and messages
along with tables formed from the converted Snodgrass, "Fundamental Technical Issues of
inputs. In Figure 8, modules 1 and 2 would Reusing Mission Critical Application
not be reusable, but module 3 would. Software", STARS Workshop 1985 Reports
Modules I and 2 could be contained within
the instantiator. Module 3 now can be used Common Ada Missile Packages, Interim
over a wide range of applications where range Report AFATL-TR-85-17, September 1984 -

and limit checking are done. January 1985

100

0.



Freeman, "Reusable Software Engineering: Jones etal, "Issues in Software Reusability",
Concepts and Research Directions", ITT SigAda
Workshop on Reusability in Probgrammin.
September 1983 Parnas, "On the Criteria to be Used in

Decomposing Systems into Modules", Com-
Nise, Dillehunt, McKay, Kim, Griffin, "A munications of ACM, 1972
Reusable Software System",
AIAA/ACM/NASA/IEEE Computers in Parnas, "Designing Software for Ease of
Aerospace V Conference, 21-23 October Extension and Contraction", IEEE Transac-
1985 tions on Software Engineering, March 1979

Grabow & Noble, "Reusable Software Con- Horowitz & Munson, "An Expansive View of
cepts and Software Development Methodolo- Reusable Software", ITT Workshop on Reu-
gies", AIAA/ACM/NASA/IEEE Computers sability in Programming, September 1983
in Aerospace V Conference, 21-23 October
1985 Goodell, "Quantitative Study of Functional

Commonality in a Sample of Business Appli-
McCain, "Reusable Software Component cations", ITT Workshop on Reusability in
Construction, A Product-Oriented Paradigm", Programming, September 1983
AIAA/ACM/NASA/IEEE Computers in
Aerospace V Conference, 21-23 October
1985

-I0

0.'.

-I

54-.I0



0

across
applications

within
applications erg narrow narrow wide verY wide

very narrow 0 1 2 3

narrow 1 2 3 4
wide 2 3 4 5

*ry wide 3 4 5 6

Figure 1 - Commonality Matrix

102



IIEftY WIDE WIDE NARROW DEftY NARROW

arts stw #* ~ m*S10 ftww ~stw, ftmr
d&UA *wfr S/v dmbpln twoI rwitm warhed emb,
absiwt pmssmw S/V VW110fistm mW*u matNsb Moslm boquts
unw k sti m gu ut r mp q s st mnwwt

9M b b Aai

Figure 2 - Classification of Commonality.
Example Spacecraft Specific.

0 103



VERY WIDE WIDE NARROW KARY 'NARROW

sots a"~ fmstiuu SiYstim ftmto" Syrtaff *toi
"at sbvcta 9sarwtr1e faict ww AMm stia wwtead owvoI

astrt porsmS NmU ftws Musion Ozatim ssem *Vts

owpiuw UygtW% proms Nmwtm towretg wsigr sa apt
Sw t wwu p.s1a0hti **At rout~vS

S/v uhatS/w wn*~~i utw
S/v duP O

O v rtiostim

Figure 3 - Classification of Commonality.
Example Across Applications.

0 104



application application
dependent appicatin dependent
Input dependent output
transformaetion# process transformation$

trmnsformnations transformations

Figure 4 - Software Package Containing Application Parts

10

=5101165



dependent application dependent
input dependent - utput
trmnsformations process transformations

Figure 5 - Packages Separated Into Application Independent
and Application Dependent

10600,



sequecer btantistor
Ssequencer epplicatlon dependentI specifications I

Input ' pTrcss o utput I
6 transformatlons transformations

Figure 6 - Figure Application Dependent Parts Created from
Instantiation of Generic Packages

*1.0

~107



Acquire
Input

_ Check for Table of

Analog Range D Limits Ranges, Messages
V Discrete If Analog Ranges, M
Inputs Limts &Check for Scaling, Scaled Data

Desirable State 8 Out
1f Discrete Messages /

Scale Input,,

Figure 7 - Non-Reusable Scaler-Checker

1

0 0



~Check
': Range,

0 * of Limits

Conuersion Parameters Perform
,Analog V to 0 Ranges Validity

Discrete Common Check Messages
:,Inputs Daa Limits Chc

• ypes 0 Scaling for Sealed

i Factors Desirable Data.,'."Out

0 Messages Inputs

IS Tables * SelectisMessages

Figure 8 - Separate Reusable (Block 3) and Non-Reusable
(Blocks I and 2) Packages

0

• 109



THE DESIGN FOR REUSABLE SOFTWARE

COMMONALITY
by

Norman S. Nise
Chuck Giff in

Rockwell International
Downey, Calfornia

4 

110



THE DESIGN FOR REUSABLE SOFTWARE

COMMONALITY

* - INTRODUCTION

COMMONALITY

CLASSIFICATION SYSTEM FOR COMMONALITY

PACKAGE DESIGN TO IMPROVE COMMONALITY

AN EXAMPLE



INTRODUCTION

PURPOSE OF.THE BRIEFING

0 TO STATE THE IMPORTANCE OF DESIGNING ADA
REUSABLE PACKAGES, APRIORI. WITH A DOMAIN

OF MAXIMUM APPLICABILITY

TO MAKE SUGGESTIONS TO ACCOMPLISH THE TASK

Ada is a registered trademark of the United State DoD. Ada JoAit
Program Office

112



LILw

IL V

zwL. Iw

00

0 04

Su

11

SUL



4NTIODUCTION

THE IMPORTANCE OF SOFTWARE'
COMMONALITY

UROLE SOIFTWARRE

COMMON PACKRAGES

114



O

THE DESIGN FOR REUSABLE SOFTWARE

COMMONALITY

0 INTRODUCTION

-COMMONALITY

(W 'CLASSIFICATION SYSTEM FOR COMMONALITY

PACKAGE DESIGN TO IMPROVE COMMONALITY

AN EXAMPLE

115



COMMONALITT

THE COMMONALITY ISSUE

1. LIMITED DOMAIN OF APPLICABILITY
* Package designed for no reuse within an applications area
* Package designed for reuse within an applications area

INSTEAD OF

Designed for reuse across applications areas

2. DOMAIN OF APPLICABILITY IS NOT
COMMUNICATED TO THE SOFTWARE
DESIGNER

:0

116



ZOMMONA Li"T

WHY THERE IS A COMMONALITY ISSUE

0 Difficulty in establishing guidelines for reuse across applications

applications vs functions!

e Lack of incentives for developers in a single applications area

117



- 0 4

6 ce

>05

6 anS

6S
16"
4 04

6 4 0

4) 6

00

118

mill



I In

.U

In

c 0 1-wcoCd, )P-
C (A/

11



- _

I,'z
0

jmmmmmis - -A.
00

* 'U -=
0

W mQI> - - -

~. *..
- -

0 '3

Jinmg- www
- _* 1

~EE~ a
*

'4

4 ~a4 ..i ..a
U III * - mmml
- U LiSA...

m14*
4

0

120

0



THE DESIGN FOR REUSABLE SOFTWARE

COMMONALITY

INTRODUCTION

COMMONALITY

CLASSIFICATION SYSTEM FOR COMMONALITY

PACKAGE DESIGN TO IMPROVE COMMONALITY

AN EXAMPLE

121



CLASSIFICATION SYSTEM FOR COMMONALITY

COMMONALITY MATRIX

WI~INPPLICATIONS5 VERY VERY
APPLICATIONS NARROW NRO WIE WIDE

*VERTYNARROW 0 1 2 3

WIDE2 45
VERTYWIDE 3 4 5 ___



to 0U A

C... 0 a:- .

uss 00 be

0 w

If_

o Zo 0
* *0 0

o Mi"w

a 4'
o Ag.a

be0 ' z% aa2%

II a a0 a a..

Mse

- 'Z.~123

SIM ki



90

a d

0 0 A

0 0
4 - z- 00

0 b

Go SO

0 40

0 %

Nb 0.. 0 S

-u

12



CLASSIJFICATION SYSTEM FOR COMMONALITY

EXAMPLE - COMMONALITY RATING

sorS navigation functions 4
data structures 6 guidance functions 4
abstract procsses 6 telemetric functions 4
computer system 6 mission. functions 2
s/w maintenance 6 input routines 2
math functions 5 output routines 2

4geometric: functions 5 system functions 0
matrix functions 5 warhead control 0

SVector functions 5 systoniRnputs 0
process functions 5 system outputs 0
communications 5
s/v design 4
s/v development 4
s/w Verification 4
computer languages 4

125



THE DESIGN FOR REUSABLE SOFTWARE

COMMONALITY

* INTRODUCTION

COMMONALITY

CLASSIFICATION SYSTEM FOR COMMONALITY

-- PACKAGE DESIGN TO IMPROVE COMMONALITY

AN EXAMPLE

1

.,.

_ 126

6e



PACKAGE DESIGN TO IMPROVE COMMONALITY

SOFTWARE PACKAGE CONTAINING
APPLICATION DEPENDENT PARTS

a pplicationl a pplicationl

dependent oppliiction dependent
input dependent output
transformations process transformations

app ic ti n pplic aion aipplic tio n
'iIndependent .independent independent

input -prvcess output

.transformations transformations

~127



PACKAGE DESIGN TO IMPROVE COMMONALITY

PACKAGES SEPARATED INTO
APPLICATION INDEPENDENT

AND
APPLICATION DEPENDENT PARTS

applicasrtion s applSSicasntion s

.trasfomatonstransformationsI

128



PACKAGE DESIGN TO IMPROVE COMMONALITT

APPLICATION DEPENDENT PARTS
CREATED FROM INSTANTIATION OF

GENERIC PACKAGES

IOI

instantletor

sequencer epplication dependent
specifications

129



THE DESIGN FOR REUSABLE SOFTWARE

COMMONALITY

* INTRODUCTION

COMMONALITY

CLASSIFICATION SYSTEM FOR COMMONALITY

PACKAGE DESIGN TO IMPROVE COMMONALITY

-AN EXAMPLE

130

011:1 1 111 0 = 1Ill 1 a



AN EAMPLE

NON-REUSABLE SCALER - CHECKER

* Acquire
Input

Check for Tbeo
Rnoog ane WLimts Ranges, MessagesVDiscrete If fntilogLits

Chputs 'o Scaling, Scaled ata

Diesirable St.te. Out7 If Discrete message s

Scale Input

131

0 m o m i %'iRM



AN EXAMPLE

SEPARATE REUSABLE (BLOCK 3)
AND NON-REUSABLE (BLOCKS 1 & 2)

PACKAGES FOR SCALER-CHECKER
4

Check
Range,

of* Limits
Anllog&iConuersion Parameters 'Perform

Nnlg v to ARages Ulldity
Discrete Common - Check messages
Input$ Dole" 0 Limits Check v

Typs •Scaingfor Scaled
~~~~Factors esrbeOute ~

40 Validity StatesOu ,

Scale/

40 messages Inputs

e Tables Select
, messages

2 3

132

MSAT Brief
Narrative to Accompany the High Level Technical Brief

C. Ogden

Slide 1: The Software Environment each of these languages and would also be

Software System Size/Complexity - many of very labor intensive. The number of

the current Army systems contain software languages with which we were bombarded,
with hundreds of functions are hundreds of led us to develop an automated tool which,

thundr es with a relative small effort, could analyze
thousands of lines of source code. To manu-

ally analyze this volume of software would be software written in a new language.

extremely labor intensive. Slide 4: MSAT History

Software Costs - Software often takes the lion
share of the system cost because software This slide shows the tools which led up
development is so labor intensive. Software to the MSAT effort. It started with the Pro-
maintenance can account for as much as 75% gram Flow Analyzer (PFA) back in the late
of the Life cycle cost. 70's and early 80's. During 83 and 84, we

* Proliferation of languages/dialects - It is developed specific tools for specific systems;

estimated that there are 450 software but since they were written for specific sys-

languages in existence; even though Ada is tems and contained little documentations

suppose to be the cure-all and be the they are not reusable. During 84 and 85, we

language for embedded systems applications, developed a FORTRAN Code Analysis Pro-

our experience has shown that a sizable per- gram (FCAP), a table driven Assembler
centage of the 450 languages are currently Code Analysis Program (ACAP) and a C

centageCode Analysis Program.
used by DoD in the systems we test.

Compliance with design methodologies/ These are better documented and somewhat
development standards - We are all con- more general purpose in nature. However,
cerned that the software being developed for they were just stop-gap measures in prepara-
our applications complies with good design tion of the general purpose tool - MSAT -

methodologies (such as top down design and which we are finishing the acceptance testing
structured programming) and good develop- in April 86. The languages shown are
ment standards (such as DoD-STD-2167). languages which we have analyzed with onc

., we check and verify compliance? of the tools. The systems shown are systems
which have had some of their software

Slide 2: Systems Requiring Assessment analyzed with one of the tools (not all results
from these analyses have been included in

Back in April 1984, we took a look at formal test reports or the respective systems.
the systems on which we were performing
software testing or planning for software test- Slide 5: Development Philosophy
ing. This slide shows whose systems and the
languages the software was written in. In developing MSAT our development

- philosophy included the following items: We

* Slide 3: Language Processors Required wanted MSAT to be language table driven.
We chose to use a Commercial Data Base

This slide shows the languages of the Management System (DBMS) (INGRES) in
previous slide ordered by High Order order to minimize development costs and to
Language (HOL) and Assembler (ASM). To take advantage of the miny useful features of

% prepare automated tools to analyze software a commercial DBMS. We wanted MSAT to
written in each of these languages would be be user friendly, e.g., menu driven with lots
very expensive. To manually analyze the of help. We knew that MSAT was not ini-
software requires individuals familiar with tially going to be the ultimate tool, so we

133

designed it for expansion and enhancement. metrics from the data base and provides the
We decided that we should practice what we various analyses and stores the results back
preach so we fully documented MSAT (we into the data base. The report generator
followed DoD-STD-2167, draft standard at takes the info from the data base to create
the time we started) and we even plan on the desired reports.
running MSAT on itself to prove its quality
and maintainability. We are validating the Slide 8: MSAT Data/Control Flow
tool and the test plans, procedures and
results are being reviewed by other Army This slide provides a more detailed look
organizations. We plan on miintaining of the data and control flow. It should be
configuration control of MSAT for many noted that the source code is entered into the
years. automatic language processor along with the

source Language description. For the static
Slide 6: Static Analysis Functions analysis the user can enter his own software

standards to compare against the default stan-
This slide shows the 15 static analysis dards in the data base which are based upon

functions as delineated in the National DoD-STD-2167, 1679.
Bureau of Standards (NBS) document: a tax-
onomy of tool features for the Ada program- Slide 9: MSAT Operational Capability

Sming support environment. The initial
implementation of MSAT contains features This slide shows the MSAT initial capa-
in the following areas: Auditing, Complexity, bility. The first language capability is VAX
Statistical Analysis, Interface Analysis, Corn- FORTRAN and 8085 Assembler. VAX
parison, Error checking and Structure Check- FORTRAN was chosen because MSAT is
ing. written in VAX FORTRAN and we wanted
Auditing - comparing collected metrics to to check the quality of the MSAT code itself.
standards, e.g. from DoD-STD-1679 # Exe- (MSAT also has the embedded query
cutable Statements - 200. Language EQUEL for INGRES). MSAT is

able to handle 3 languages for each system
Complexity - McCabes Cyclomatic Complex- and 2 for any unit or subroutine. In a partic-
ity and Meyer's Extension ular unit MSAT can analyze the code for a
Statistical Analysis - Various simple statistics situation where there is embedded assembly
on the code metrics language over the Static Analysis (SA) func-
Interface Analysis - Does the call statement tions. The reports are described in greater

with parameters match the called routine with detail on the next slide.

its parameters

Comparison - Compares two version for Slide 10: MSAT Reports
structure changes, metric changes, etc. This slide shows the general break-
Error Checking - various errors such as down of the MSAT reports.
unresolved external references Source Listing/Table of Contents - We some-

Structure Checking - Recursion, Lower level times get boxes of code listings where a table
module calling higher module of contents would come in very handy.
The Remainder of the functions should be Software quality metric reports - This shows
added in the future. the various levels of the quality metric

reports.
Slide 7: MSAT Schematic Structure Chart - This shows the subroutine

S This schematic shows that MSAT runs hierarchical call structure
on VAX with VMS. A tape of the source Error Report - Shows various errors detected
code (in ASCII) is entered onto disk. This i.e., Unresolved external references.
source code is entered into the automatic
Language processor which extracts the basic Interface Analysis Report - Potential prob-
metrics and stores away the info into the data lems in how the calling and called routines
base. The Static analysis function take the match up.

134

I

Standards Compliance - Shows the various the code, i.e., how good is the quality of the
,,,"levels of this reports exception (those units code. Third, it provides visibility into the

not complying), unit summary, and system code to assist or analysis in understanding
summary. and analyzing the code. Finally, MSAT pro-

Change analysis report - the differences vides a comparison between various version

between two versions of the same system; to show what has actually been changed and

shows differences in the metrics on a unit by where.

unit basis as well as differences in system
structure. This is useful to handle the tape- Slide 14: Anticipated MSAT Users
of-the-month syndrome where we test a sys-
tem, we find problems, the contractor goes Software Developers - we would like to

back to his place and comes back with a new give MSAT to software developer to be used

version of the software to be installed. What during development - no reason to check the

did he change? This will help point where code after the development is complete, find

and what kind of changes have been made. problems and the developer says, OK there
are problems, now pay me to fix them.
Much better to give it to developer to be

Slide 11: Sample report used during development so problems can be

This is a sample of MSAT Standards changed up front.

Compliance Unit Summary Report. It shows
for example that the standard of executable Verification and validation teams or contrac-
Statements less than or equal to 200 is met tors - obvious usage
by all 203 units. The next standard, Max- Development testers - that us (EPG) can be
imum consecutive lines of code without com- used during DT.
ments less than or equal to 10 is met by 192or 94.6% of the units and not met by I I Users - the Irtel School was interested in
ori9.6%eofathe unith standao d mt b 1 MSAT to help them analyze a program they
units. The value 10 in the standard can be had gotten from Great Britain to understand
changed to 5 by the user if so desired. he sotten fro rithmstthe source and algorithms.

Slide 12: Software Life Cycle Costs Software Support Centers - the LCSSC could
use MSAT for maintenance quality

Assume that a software system during assurance.
the initial project development cost S3M (as Software Libraries - STARS is interested in
depicted by the solid line). Over the total MSAT to be used to analyze the reusable
life cycle of the system (10'years) the total Ada components which will be placed in the
software costs could total SOM, with S7M reusable components library.
being spent for maintenance where mainte-
nance is defined as fixing bugs and enhancing Slide 15: Future Development Proposed to
the system. Studies have shown that up to STARS
75% of the software life-cycle costs can be STARS
spent on maintenance. Conversely, the The first thing is to develop the initial
dashed line depicts a system where we may capability to analyze Ada code. Second, we
have spent more money up front on docu- need to make MSAT transportable so it can
mentation and using tools such as MSAT but be more usable. To do this we propose
the total life cycle costs should be decreased. rewriting MSAT ,n Ada (everybody should

eventually have an Ada compiler), eliminat-

Slide 13: The Multi-Lingual Static Analysis ing the VAX/VMS dependencies (system
Tool (MSAT) calls, etc.) and providing a stand-alone,

6government owned DBMS so that none has
This is an overview slide to refresh our to buy the commercial DBMS.

memories as to what MSAT does. First,
MSAT provides static analysis of the software Third, we need to enhance the Ada
in the areas we have already talked about. capability to handle the Ada special charac-
Second, MSAT provides a quality analysis of teristics such as concurrent processing,

135

exception handling. Fourth, develop a library Slide 16: FY86 MSAS Goals
language capabilities: pick the 20 most used
languages in DoD and make MSAT work on If MSAS is funded by STARS by April
them. 1, the initial Ada capability would be

developed, we would pick another language
Fifth, expand the current static analysis such as Pascal and provide the capability to

capability in all 15 areas shown before. analyze software written in that language.
Finally, provide the capability to store and And finally, we would begin converting
report on manually collected data such as MSAS to Ada to make it transportable.
software trouble reports associated with the
software system.

1

.5.°
03

MULTILINGUAL STATIC ANALYSIS SYSTEM (MSAS)

INTRODUCTION

A. HISTORY.

B. DEVELOPMENT PHILOSOPHY

C. DESIGN FEATURES

Do REPORTS

E. BENEFITS

F. ANTICIPATED USES

G. PROPOSED DEVELOPMENT

137

THE SOFTWARE ENVIRONMENT

*SOFTWARE SYSTEM SIZE/COMPLEXITY

*SOFTWARE COSTS
* * PROLIFERATION OF LANGUAGES/DIALECTS

*CUMPLIANCE WITH DESIGN ME[HODOLOGIES/DEVELOPMENT STANDARDS

* TOP DOWN DESIGN

o STRUCTURED PROGRAMMING

* SOFTWARE DEVELOPMENT STANDARD DOD-STD-2167

138

SYSTEMS REQUIRING ASSESSMENT (April 1984)

SYSTEM

UNDER TEST LANGUAGE

Teampack ROLM 1602 ASM

RPV FORTRAN IV (DEC)
PL/M-80

SKC FORTRAN
8085 ASM
AACRO-11 ASM
SKC 3121 ASM

JTIDS SKC FORTRAN
SKC 3132 ASM
AMZ 8002 ASM

REGENCY NET MICROTEK PASCAL
OMSI PASCAL
8085 ASM
AMD 2901 ASM
RCA 1802 ASM

TRAILBLAZER C
ROLM FORTRAN
68000 ASM

139

LANGUAGE PROCESSORS REQUIReD

HOL ASM

C ROLM 1602

FORTRAN IV (DEC) 68000

MICROTEK PASCAL 8085'

OMSI PASCAL AMD 2901

PL/M-80 AMZ 8002

ROLM FORTRAN MACRO-11

SKC FORTRAN RICA 1802

SKC 3121/3132

140

1979 PFA
1983-4 SPECIFIC TOOLS

1984-5 FCAP, ACAP, CCAP

198:5-6 MSAT

LANGUIAGES

H~L §r:I

FORTRAN - VARIOUS VERSIONS 3600

JOVIAL 8600',

C MACRO-11

RATFOR ROLM1 ASM

SKC ASM

POSITION LOCATING REPORTING SYSTEM (PLRS) TE411PACK
TACTICAL COMPUTER SYSTEMl (TCS) TRAILBLAZER

INTEGRATED INERTIAL NAVIGATION SYSTEM (IINS) REMOTELY PILOTED VEHICLE (RPV)

SGT YORK FIRE CONTROL

JOINT TACTICAL INFORMATION DISTRIBUTION SYSTEM (JTIDS)

141

0212

DEVELOPMENT PHILOSOPHY

LANGUAGE TABLE DRIVEN

. COMMERCIAL DBMS

USER FRIENDLY

DESIGNED FOR EXPANSION/ENHANCEMENT

COMPLETELY DOCUMENTED/MAINTAINABLE

* VALIDATION OF TOOL AND CONFIGURATION MANAGEJ'1ENT

.142

142

STATIC ANALYSIS FUNCTIONS

L, AUDITING

?. COMPLEXITY MEASUREMENT
INITIAL

3. STATISTICAL ANALYSISIMPLEMENTAT ION
4. INTERFACE ANALYSIS

5. COMPARISON

6. CONSISTENCY CHECKING

* * 7. ERROR CHECKING

•* 8. STRUCTURE CHECKING

9. COMPLETENESS

LO. DATA FLOW ANALYSIS

LL. IO SPECIFICATION

L2. CROSS-REFERENCE

L3. SCANNING

L4. TYPE ANALYSIS

LS. UNIT ANALYSIS

PRODUCED AS A BYPRODUCT OF OTHER FUNCTIONS

*" REQUIRED TO RETAIN CURRENT TOOL CAPABILITY

1

143

0.

w w

(nA

Lii I ~ >

=I

C/~ I(AZ I

- Ir C

.4 (.3 ~144

I.r

CL u-

0:u

CL (z -

I- tAJ 1411

CE-

cca.4 > A . A
_j~i1 t" j .j

*A 002 lV

145

0i

IAi

i-

A
V

4A I- -

4j W

CLi

(U AA .CA

0 -J J tj 4)l1.
AAI u ' L. (. >

4J1 ~ 4 'U G a - 4a. S.
fa S t. 3- U 0

W; CL4.0 = L.

~1 1
IA-V

-LA.

OA w
C7 LA iI

Ln z . .o C - LA- 4
to cc h 0 0a Q a .

z CL

~146

III HIP

MSAT REPORT

SOURCE LISTING/TABLE OF CONTENTS (TOC)

SOFTWARE QUALITY METRIC REPORTS

. DETAIL FOR UNIT

, UNIT SUMMARY

. SYSTEM SUMMARY

. STRUCTURE CHART

. ERROR REPORT

. INTERFACE A,.ALYSIS REPORT

. STANDARDS COMPLIANCE REPORT
. STANDARDS EXCEPTION

UNIT SUMMARY COMPLIANCE

. SYSTJ1 COMPLIANCE

* CHANGE ANALYSIS REPORT

147

W

UNCLASSIFIED Output Page 48

Standards Compliance UNIT SUMMARY Report: MSAT POT

TSS IO/Veisior. MSPOT / 1.0 MSAT Version :1.0
Cluster Level SYSTEM CSCI Collection Date
CSCI n/a

IStandard Document: EPG-STD (01 x based on STD document I
ILanguage ID :VAX11FOR'

I I a (%) of Ia (%) of
ICriterion Descript ion: I jNITS UNITs

I COMPLIANT INON-COMPLIANTI

101 Executable Statements -u 200 203 (100.0%) 0 C0.0%)

(C1 Max Consequetive Executacle LOC w/out Comment 192 (94.6%) 11 5.4%)

(0) a Entry Points <x 1 203 (100.0%) 0 C0.0%)

00e comments (whole - partial) > C 199 (98.0%) 4 (.0%)

-~(1 Max imum Internal Nesting Level <x 5 198 C97.5%) 5 (2.5%)

(I % Esec~table commentedl >2 80 125 (61.6%) 78 C38.4%)

(01 0 Compound Executable 11.O = 0 203 (100.0%) 0 (0.0%)

(01 0 Sackwerts Branches 0 203 (100.0%) 0 (0.0%)

1-1 0 Assembly LOC 2 0 203 (100.0%) 0 C0.0%)

(0) 0 Prolog lines '0 Cfor units with 0 Exec s 199 (98.0%) 4 C2.0%)
tints >25)
[01 0 Prolog lines '10 196 (96.6%) 7 C3.4%)

(01 * Lines of Conditional code =0 199 (98.0%) 4 C2.0%)

[*1 McCabe's CyCloma-iC <= 10 182 (89.7%) 21 (10.3%)

jej Myer's Complexity <a 10 187 (92.1%) 16 C7.9%)

Total UNITs in CLUSTER 203

S-FEB-86 14:26:49 Report Page:1

UNCLASSIFIED
Classification verified by THOMPSON

148

ku Oq-

I0 p 7

In IG IUl ui
, 0.- ZI

U. coI.
I u'

*c iu Ib.

* U.
w I Iy

0. lu -j

cr. SA EL
Co

- - - - - - - - -

LAJ 4k r- 0 Lr -41 ON ^

4A %*
Aj q- a

149I-

0' I ~ -' ~

ori

THE MULTI-LINGUAL.STATIC ANALYSIS TOOL (MSAT)

* PROVIDES STATIC ANALYSIS OF THE SOFTWARE

9 AUDITING
I6

a COMPLEXITY MEASUREMENT

a STATISTICAL ANALYSIS

o INTERFACE ANALYSIS

s COMPARISON

s ERROR CHECKING

o STRUCTURAL CHECKING

o PROVIDES QUALITY ANALYSIS OF THE SOURCE CODE

o PROVIDES VISIBILITY INTO THE SOURCE CODE

o PROVIDES CONFIGURATION VERSION COMPARISON

I

ANTICIPATED SAT USERS

SOFTWARE DEVELOPERS (SQA)

VERIFICATION AND VALIDATION

DEVELOPMENT TESTERS
USERS (TO UNDERSTAND SOURCE/ALGORITHM)

SOFTlARE SUPPORT CENTERS

SOFTWARE LIBRARIES

151

IO

FUTURE DEVELOPMENT PROPOSED TO STARS

A. DEVELOP INITIAL ADA CAPABILITY

B. MAKE THE SYSTEM TRANSPORTABLE

* N o CONVERT SOURCE TO ADA

o ELIMINATE VAX/VMS DEPENDENCIES
o STAND-ALONE DBMS

C. ENLANCE ADA CAPABILITY

D. DEVELOP A LIBRARY OF LANGUAGE CAPABILITIES

E. EXPAND TIE STATIC ANALYSIS CAPABILITY

F. EXPAND THE DATABASE FOR MANUALLY COLLECTED DATA

152

-- 0

FY86 MSAS GOALS

o INITIAL CAPABILITY TO ANALYZE ADA SOFTWARE

o CAPABILITY TO ANALYZE SOFTWARE WRITTEN IN PASCAL

OR SIMILAR LANGUAGE

o START OF CONVERTING MSAS TO ADA AND MAKE TRANSPORTABLE

TO OTHER SYSTEMS

CURRENTLY MSAS HAS CAPABILITY TO ANALYZE FORTRAN

AND 8085 ASSEMBLER CODE.

1

153

4

A CLASSIFICATION SCHEME FOR REUSING
SOFTWARE COMPONENTS

Ruben Prieto*
Barbara Moore

GTE Laboratories, Inc.
40 Sylvan Road

Waltham, MA 02254
(617) 466-2933

Introduction This paper also reports current work on
a software-supported query system that facili-

Software reuse in the context of this tates retrievals based on the classification
paper is the selection, modification and adap- scheme described.
tation necessary to fit an existing component
into a new software system. The focus of the Library Classification Schemes
paper is on the selection problem, i.e, the
ability to locate and retrieve an appropriate Classification is the act of grouping like
component from a large collection of com- things together. All members of a group- or
ponents, such as collection of Ada libraries, class- produced by classification share at least

A classification scheme is a domain one characteristic which members of other

knowledge structure that organizes collections classes do not possess. Classification displays
of items to satisfy the needs of the users of the relationships between things, and
the collections. The GTE Reusability project between classes of things and the result is a
has performed an in-depth investigation on network or structure of relationships which
classification schemes with the aim of identi- may be used for many purposes.
fying and adapting one that satisfies the Classification is a fundamental tool for
needs of software users. In this paper a the organization of knowledge and pervades
faceted classification scheme is proposed. everyday life from supermarkets to
The classes in the scheme are identified by warehouses to schools. A library is usually
collecting descriptive terms from component considered as the typical example for
descriptions and grouping them by their rela- classification where a collection has been
tionships. The set of collected attributes organized for easy access and retrieval. A
form a vocabularly of terms that can be used collection owes its organization to a
to describe software components by their classification scheme which in turn is based
reusability-related attributes, on a controlled and structured index vocabu-

The main features of the proposed lary called the classification schedule. The

classification scheme are expandability, adap- latter consists of the set of names or symbols
tability, and consistency. Expandability representing concepts or classes and is listedmans ane classecn Eadd it in a systematic order to display the relation-means that new classes can be added with a sisbtencass
minimum of reclassification problems, adap- ships between classes.
tability means that the scheme can be cus- Classification schemes can be arranged
tomized to a particular environment, and in two ways: enumerative and faceted. The
consistency means that components from enumerative or traditional method is to pos-
different collections in the same class share tulate a universe of knowledge and to divide
the same attributes, it into successive narrower classes which will

include all the possible compounded classes
and arrange them to display their heirarchical

*Part of this work was conducted at the University
of California Irvine in connection with the author's PhD relationships. Dewey Decimal classification is
disseratation a typical example _f an enumerative

155

II

0

decachotomy based hierarchy. All possible specific classes, large groups of very similar
classes are predefined. components.

The faceted method relies not on the An experimental collection of over 200
breakdown of a universe, but on building up program descriptors of modules ranging from
or 'synthesizing' from the subject statements 50 to 200 source lines of code was used to
of particular documents. By this method, derive facets and terms of a preliminary
subject statements are analyzed into their software schedule. Two groups of facets
component elemental classes, and it is these were identified: those describing functionality
classes only which are listed in the schedule; and those describing the environment, three
and their generic relationships are the only in each group. It was observed that program
relationships displayed on its pages. When descriptions consist of two parts: one describ-
the classifier using such a scheme has to ing the functionality (i.e., what it does) and
express a compound class, he does so by the other describing the environment (i.e.,
assembling its elemental classes. This pro- where it does it). Implementation details or
cess is called synthesis and the arranged realization (i.e., how it does it) were not usu-
groups of elemental classes that make the ally included in a description. So, function
scheme are the facets. Facets are sometimes and environment were selected as facets and
considered as perspectives, viewpoints or realization characteristics used as discriminat-
dimensions of a particular domain. ing factors to separate similar components.

Systematic order in a faceted scheme It was observed that functionality
consists in ranking the facets by citation equivalent components performed essentially
order according to their relevance to users of the same function and that differences in
! !h- collection. Terms within facets are their realizations could be identified indirectly

, ordered by their relationship to each other or through some intrinsic characteristics like
their conceptual closeness. There are size, complexity, and programming language
different user selected criteria for ordering used. Implementation differences based on
terms and by convention, this ordering con- intrinsic factors are approximate and valid
sists of a one dimensional list where concep- only when the number of functionally
tual closeness between any two terms is equivalent components is large.
'measured' by the number of terms listed
between them. When classifying in a faceted Functionality - The three facets for func-
scheme, the most significant term in the tionality were identified by observing the
classification description is a term selected ipnatyve re id ent sering

fromtheface tht i mos reevan tothe imperative nature of. statements describingfrom the facet that is most relevant to the functions. e.g.,
user.

<input, character, buffer>,
Software Classification <substitute, tabs, file>,

, Faceted schemes are very attractive for <search, root, B-tree>

classifying reusable software because they Description of functionality therefore consist
are, in general, more flexible, precise and of

* better suited classification scheme for reus-
able software components has been proposed <function, objects, medium>
by one of the authors (Prie85). The scheme where function is a term naming the func-
proposes a component description format tion, objects identifies the objects manipu-
based on a standard vocabulary of terms, lated by the function and medium identifies
imposes a citation order for the facets, and the 'locus' of the action, usually a data struc-
provides a conceptual metric to measure con- ture.
ceptual distances between terms in each facet Environment - The facets for environment
for a more effective selection of closely . were identified as:
related items. The scheme is based on the

-"criteria that collections of reusable com- <system-type, functional-area, setting>
* ponents are very large and continuously where system-type is an application indepen-

growing, and that they are, even in very dent name typically given to the basic

156

' 12II

function described in functionality. For has a descriptor (d) which is an ordered set
P example, report-formatter, scheduler, retri- of terms from each facet (F). Every term

ever, expression-evaluator, etc. Functional- in a facet is related to one or more super-
area describes a particular identifiable applica- types by means of a weighted conceptual
tion dependent function. It is usually defined graph. During retrieval, a query is a valid
by an established set of procedures in an area descriptor d of terms selected from each
of application like general-ledger, cost- facet. If there is no match in the collection
control, operating-system, etc. Setting for d then closely related terms are selected
describes the location where the application is by computing distances in the corresponding
exercised. It captures details of how to con- conceptual graph to make new descriptors d
duct certain operations. These environment 2< i < n. Matches on subsequent d 's will
facets, reflect to some extent, the nature of retrieve components closely related to com-
the experimental sample used but collections ponents described by d.
in other domains could turn up with other
facets such as type of security, accessibility, It is assumed that components require
or design methodology used. A descriptor some modifications before being used in a
(i.e., classification code, call name) for a pro- new application based on the fact that code is
gram consists in defining a term from each very specific and an exact match between
facet as in: requirements and available features is almostimpossible. Code is the distilled product of

several design decisions for which there is
<substitute/backspaces/file/text formatter/ usually no documentation unless the whole

program development/software shop> refinement process from specification through

* design through code was captured. Even in
Conceptual Closeness - An important feature these ideal circumstances, the refinement
of this scheme is the introduction of a con- process is so long and involved that its mere
ceptual graph to measure closeness among analysis and understanding would overcome
terms in a facet. A conceptual graph is an any reuse effort. Understanding of com-
acyclic directed graph that relates every term. portent characteristics through indirect means

A in a facet through a set of weighted edges. is therefore essential.
Terms are at the leves and the nodes are
'super types' that denote general concepts. Current Work
Weights are user-assigned; that is, the closer
the user perceives a relationship of a term to The faceted classification scheme, the
a supertype, the smaller the weight. The conceptual distance model and a mechanism
example in figure 1 shows a partial weighted to evaluate and rank functionally equivalent
conceptual graph for some function names. components were integrated into a prototype
The notions or supertypes are all related to library system. An SADT level 0 diagram of

"K. the notion of function () which is the facet the library system for reusable code frag-
name. Closeness is then measured by the ments is shown in figure 3.
closest path between any two terms; for
example, measure is closer to add (i.e., 6) This library system can be seen as a
than to move (i.e., 16). A reuser perspective group of procedures that help in query con-

0 -was used for weight assignment in this partic- struction and in the evaluation of the
ular graph, retrieved sample for potential reusability.

The data base of component descriptors is
- One practical application of a closeness considered to be the catalog.

measurement happens during retrieval. If a
particular term in a query does not match any The query system (boxes 1.2. and 3)
available descriptions in the collection, the makes use of the classification scheme to
system then tries the next most closely interactively generate component descriptors
related term to retrieve descriptions of (groups of valid terms used to describe a
closely related items. component). The system guides the user in

selecting valid terms from the classification
An abstract view of the scheme is schedules and enforces a citration order for

presented in figure 2. Each component (a) the terms based on the established relevance

157

order of the six previously defined facets. A software metrics and on reuser experience.
query is a six-tuple descriptor of a corn- Reuser experience is used as a modifier for
ponent. A query may be modified by inser- the other metrics to adjust their relevance.
tion or removal of terms in a prescribed
order (from less to more relevant) resulting Tests with the library system showed
in a specialization or generalization of the better retrieval performance in terms of user
query. satisfaction than regular relational data base

systems. Because of the relatively small size
A query may also be expanded. of the collection and the limited number of

Queries of closely related terms are con- participants, the results, although very
structed based on their conceptual distance. encouraging, are only indicative at this time
Conceptually closer terms are selected first rather than conclusive but work is on the way
for the new queries. Groups of queries are to scale up the collection and test the system
ordered by their relevance to the original in a production environment.
query. The result is an ordered set of queries
from most to least 'related' to the original Effort is under way to implement these
query. Scope of expansion is controlled by concepts of software classification and reusa-
the user. Expansion is used when the origi- bility in the domain of information manage-
nal query returns the empty set. Query ment software at GTE. Reusable assets has
expansion is central to the library system. been the focus and a preliminary analysis of

the assets domain has resulted in the
Retrieval (box 4) is implemented by a definition of four basic facets; asset-type

relational data base system where each pro- (e.g., software, hardware, information),
* gram descriptor is a tuple in the database application-area (e.g. business, telecommuni-

with pointers to source code, documentation cations, systems), complexity- level (e.g.
and other relevant information. Evaluation code-fragments, subcomponents, modules,
(box 5) is a system of its own that normal- subsystems), and reuse-mode (e.g. modify,
izes reusability related metrics and ranks the adapt, use-as-is, call, insert). Work is under
4 ampie according to the estimated reusability way to. expand facets and populate the
effort required to reuse the components. schedules with appropriate terms for each

facet. Terms will be defined from the
The evaluation system is based on the analysis of a representative sample of assets

assumptions that the collection of com- and asset descriptions. A library system for
ponents is very large; that several com- asset management will be the logical follow
ponents in a given class of components in the up in this project.
collection may be functionally equivalent;
and that there is a need to assist the user in [PRIE85] Prieto-Diaz. R. A Software
selecting, from among all functionally Classification Scheme, Ph.D dissertation,
equivalent components, the one easiest to Department of Information and Computer
reuse. The evaluation mechanism estimates Science, University of California, Irvine,
potential reusability effort based on four basic 1985

1

S

0

158

10 00 1 00 Z%100

measre ad ~r) moving something from

p) noinof q) notion of 32

enumIerat ion, replacement. s~Notion of

moasue 10 move substitute delete

Figure 1. A Partial Weighted Conceptual Graph for the Function Facet

159

THE COMPONENTI
THE DESCRIPTOR

THE FACETS
X/

F1 F2 F
THE TERMS T11 T21 TNJ

T12 T22 TN2

T13 T23

0 TNJ

THE CONCEPTUAL
D IS TA N C E GRA P H F F

F1:= F2 :

THE SUPERTYPES

T11 T12 T13 . . . TiM

Figure 2. Abstract View of the Proposed
Classification Scheme

160

INN

m
0

a..

4 £1

a aa

C,

Z,50

C12 1

CCJ

-9 z

I A A jt

~161

1 S~ ld III' ill 1 '

9

A SOFTWARE
CLASSIFICATION

SCHEME

Ruben Prieto-Di'az

Sofware Reuse Project
Computer Science Laboratories

GTE Labs.

A

!• October 7, 1985

162

05

CLASSIFICATION SCHEME:

1- Definitions

2- Classification Schemes

3- Faceted Schemes

4- Our Scheme

163

DEFINITIONS

Classification: Discovery and display of concepts and
their relationships.

Example:
Eagle -- bird of prey, day hunter
Owl -- bird of prey, night hunter

Classification Scheme: Tool for arranging concepts and
relationships in a systematic
order based in a controlled
index vocabulary.

Index Vocabulary: Ordered set of names which
represent concepts.

Examples:
vertebrates- amphibians- frogs- toads

000 Generalities
100 Philosophy and related disciplines
200 Religion
300 The social sciences
400 Language
500 Pure sciences
600 Technology (applied sciences)
700 The arts
800 Literature
900 Geography and history

164"0

Relationships:

Hierarchical --* Indicate subordination or inclusion.

(animal-vertebrate-birds-eagle-golden eagie)

Syntactical --+ Between terms in classes defined by
one or more characteristics.

migratory birds
birds of the sea shore
the respiration of birds

Classification Schemes:

Faceted -- Based on synthesis

Enumerative --+ Based on exhaustive listings

Facet - A perspective

165

EXAMPLES

Domain - animals/fauna

Facets - by effect on man
by habit
by habitat

by land form
by ground cover
by latitude
by element

by zoologist taxonomy

A Faceted Scheme:

(process facet)
Physiology

Respiration
Reproduction

(animals facet)
(by habitat subfacet)

Water animals
Land animals

(by zoologists' taxonomy subfacet)4 Invertebrates
Insects

Vertebrates
Reptiles

166

Ll
b''

An Enumerative Scheme:

Physiology
Respiration
Reproduction

Water animals
Physiology of water animals

Respiration of water animals
Reproduction of water animals

Land animals
Physiology of land animals

Respiration of land animals
Reproduction of land animals

Invertebrates

Physiology of invertebrates
Respiration of invertebrates
Reproduction of invertebrates

Water invertebrates
Physiology of water invertebrates

Respiration of water invertebrates
Reproduction of water invertebrates

Land invertebrates
Physiology of land invertebrates

Respiration of land invertebrates
Reproduction of land invertebrates

Insects
Physiology of insects

Respiration of insects
Reproduction of insects

Water insects

* etc....

*'

* ,167

kWV

FACETED vs. ENUMERATIVE SCHEMES

* ENUMERATIVE

+ Extensive
+ Usually incomplete
+ Rigid
+ Central hierarchy

.:. *FACETED

+ Brief
+ High resolution
+ Amenable to automation
+ Flexible

'68

/s~

168

FACETED SCHEMES

_ Facet Ordering

Animal Facets Relevance

Pespective more p-less

Zoologist taxonomy habitat habit effect on man

Marine Biologist habitat taxonomy habit effect on man

Environmentalist effect on man habit habitat taxonomy

2 Term ordering - Display relationship by
* linj 'ear ordering

mercury solitary animals

venus herd animals

earth social animals

mars etc..

etc..

* Synthetic Classification

title classification

a) Salt water fish > fish/marine

b) Frogs of the lake --- >frogs/lake

c) Butterflies of the river --- > butterflies/river

169

S!

OUR SCHEME -* Faceted

- Precision on software component descriptions

- Expandable

- Flexible

- Provides metric for closeness of relationships

Metrics:

* Facet level --+ Relevance between facets

(facets ordered from most to less relevant)

Term level --+ Use of user defined supertypes

, I

100o -, 100 1 00 1 .00

r) moving something fromits original place

) q) notion of 3
p) notion of q) notoioo off

replacement hoinf
enumerat ion, /\exchange

Smessure add move substitute delete

170

ABSTRACT VIEW OF- THE SCHEME

THE COMPONENT

ITHE DESCRIPTOR

T1A T2B,$t. TNJ)

THE FACETS

FI F2 FN

* THE TERMS _ T11 T21 TNI

T12 T22 TN2

T13 T23

TNJ

THE CONCEPTUAL
DISTANCE GRAPH

FI: F2 :

THE SUPERTYPES
T1, T12 T13 . . . T1M

171

0e

-- -- - -n ------- r fl~ fif J rman m rlfllnmu sU

IMPLEMENTATION:

1- Observations

2- Facet Selection

3- Synonym Control

4- Component Evaluation

172

P II 111111 1W 1

OBSERVATIONS:

9 Component Descriptions --+ Syntactical relationships
among terms

add file to archive

read lines from a file

convert string to floating number

9 Tension Problem on description detail

High Precision in
descriptor

Probability of

Low a match

Low High
number of facets

173

J

PARTIAL SCHEDULE:

FUNCTIONALITY

(citation order -. - -- -. 1)

{function} {objects} {medium}

input tabs keyboard
output backspaces mouse
move digits sensor
append characters printer
insert patterns display
extract tokens cards
substitute integers tape
delete reals disk
compare words speech
parse strings file
decode lines table
search buffers buffer
measure files stack
split tables list

- lists tree
*trees

174

* 1

SYNONYM CONTROL

Why?' People have different interpretation for
different terms.

<mnove, words>..

<transfer, names>4sm co ep

Need to unify descriptors under same concept

* SOME FUNCTION SYNONY-MS

GIVEN NAME SYNONYMS

input data...entry/scan/enter/read/
output data - .output/ prin t/echo/sh ow /write/d isp lay/
move transfer/copy/
append aflix/attach /conceaten ate/j oin/
insert include/push/
extract pick/
substitute replace/exch an ge/tran slit erat e/
delete remove/erase/can cel/
compare test/
parse recognize/
decode m ultiway/muti-branch /selector/

*search look-up/find/
measure count/advance/size/
split separate/break..u p/

175

L;~

COMPONENT EVALUATION

e Attribute Selection Criteria

- Validated metrics
- Objective
- Easy to use
- Related to program understanding

e Selected attributes

- Program size --- Source lines of code
- Program complexity --+ Conditional statements
- Programming languge --+ Similarities between

source and target
languages

- Documentation -- Quality score

176

6i

METRIC NORMALIZATION

Why? Ability to rate and rank similar components

Problem: Attribute metrics function of other factors

Introduction of memebrship functions
from fuzzy set theory

EXAMPLE
Attribute: Component Size

Measure degree of membership to
the class of small components

AP "FORTRAN

0

10 100

Lines of Code
Role of Reuser experience:

modifier of membership functions
I

Small Component

- from a neutral perspective

o_ for a novice programmer
X for an expert programmer

* U)

E

," 0

20 40 60 80 100

lines of source code

177

I

01 .0 CL
4x Lu

La:

'UU

P.b.

'A 22'..

*jxc
cJj Q 40)w

00 g

CEj

Cf)U

0 cc

40

Iw -0 xC
0Ji in. cu.

96 V -

178

SUMMARY OF CONTRIBUTIONS

" An expandable and adaptable scheme
for software classification.

" An approach to measure closeness
V among terms in faceted schemes.

" A process to define facets and
introduction of six reuse related facets.

" Introduction of six reuse related
attributes and their metrics.

" Ability to normalize reuse related
metrics by using fuzzy functions.

* These concepts can be integrated into
a library system as demonstrated by

* prototype.

179

0P

GUIDELINES FOR WRITING REUSABLE
ADA (R) SOFTWARE

Rick St. Dennis

Honeywell Inc.

Computer Sciences Center
1000 Boone Avenue North

Golden Valley, Minnesota 55427

ABSTRACT

Software reuse is key to significant gains in programmer productivity. However, to achieve its
full potential guidelines for writing reusable software must exist and be followed. While language
independent, measurable characteristics of reusable software can be the basis for these guidelines, the
guidelines themselves should be language-specific. This paper describes ongoing research at the
Honeywell Computer Sciences Center to define a set of characteristics of reusable software as well as
guidelines for implementing them in the Ada language.

Keywords: Ada, reusable software parts, reusability, object-oriented programming.

Ada is a registered trademark of the U.S Government (AJPO)

This work was supported in part by the Office of Naval Research under contract number N00014-85-
C-0666.

1. Introduction small year-to-year productivity increases as
contrasted with dramatic increases in

Both software production costs and the hardware fabrication [HOROWITZ84]. We
amount of new software produced annually feet ,hat a key to significant gains in program-
are skyrocketing. In 1980, the U.S Depart- mer productivity lies in the area of software
ment of Defense (DoD) spent over $3 billion is an exponential function of its size. Halv-
on software. By 1990, their expenses are ing the amount of new software built will
expected to grow to $30 billion/year more than halve the cost of building the

* [HOROWITZ841. If current development software that we need [JONES84].
d- trends continue, future costs will be

increased even more by unreliable software, Software reuse is an important part of
software delivered late, and continuing the RAPIER (Rapid Prototyping to Identify
maintenance problems. End-User Requirements) project for many of

the same reasons it is important tc software
Today's software needs outpace our productivity increases in general. One of

ability to produce it, as shown by the back- RAPIER's main goals is "...to develop a pro-
logs in MIS departments nationwide, and totype engineering environment [that will
needs are growing each year [STARS83]. provide tools and techniques for developing
There is and will continue to be a serious modifiable prototypes qickly and inexpen-F shortage of qualified programmers to meet sively..." [RAPIER86! The approach to
these needs. One might expect productivity achieving this goal is to build prototypes from

* increases for programmers to make up for at r(usable software parts. It is the characteris-
least a part of this shortage. However, tics of these reusable software parts that will
software development has been relatively provide the modifiability, and the rapid and

181
0

inexpensive development of prototypes that software base. See Section 5 of [RAPIER86].
RAPIER requires. We believe that the features of the Ada

language combined with a set of software
To date, no adequate characterization of design and coding guidelines supporting

what makes software reusable exists. It is characteristics of reusable software will
quite common to read unmeasurable, qualita- enable creation and reuse of software in a
tive admonitions as to what makes software manner not possible with most other
reusable and/or specific examples of software languages and systems. These guidelines will
that is claimed to be reusable. However, constrain how Ada software is written for the
these admonitions (or "metacharacteristics") sake of reusabilitv.
and software examples are not enough.
Measurable characteristics of reusable Companion work at Honeywell's Com-
software are needed as well as specific guide- puter Sciences Center is also addressing the
lines to implement them in source code. organization and composition principles that
Only through use of these characteristics and will provide a framework for reuse of com-
guidelines can the full potential of reusability ponents. A classification of components
be achieved. according to behavior has been proposed in

Section 5 of [RAPIER86]. Program composi-
The RAPIER project has developed tion using an adaptation of the operational

Version 1.0 of "A Guidebook For Writing paradigm for program design has also been
Reusable Source Code in Ada (R)" proposed in Section 3 of [RAPIER86]. A
[STDENNIS86], [RAPIER86I. This guide- high-level language for composing programs
book contains three reusability metacharac- of components drawn from a software base
teristics, fifteen measurable characteristics using a Prototype System Description
that realize the metacharacteristics, and 63 Language (PSDL) is being designed by Inter-
guidelines for implementing these charac- national Software Systems, Inc. (ISSI)
teristics in Ada source code. Guidebook [ISSI861. So the characteristics and guidelines
chapters are organized to follow the Ada in our guidebook fit into an overall approach
Language Reference Manua' [DOD83]. Ver- to reusability.
sion 1.0 of the guidebook contains selected
chapters covering all major Ada program
units, program structures, compilation issues, 3. Reusability Metacharacteristics
and visibility rules. Example Ada modules We propose these metacharacteristics of
that were written following the guidelines are
also provided. This guidebook provides the
RAPIER project with a basis to begin writing (I) Candidate software for reuse must be
reusable Ada software parts to be used in its able to be found.
prototyping system. Findable software must comprise both

This paper outlines the approach to code and specification. At a minimum,
achieving reusability we prescribe in our the specification tells users what a
guidebook. In it we list our reusability software part does, thus allowing them
characteristics, highlight one characteristic, to decide whether it meets their func-
and provide guidelines supporting it. We also tional needs. A specification may
provide example Ada modules written follow- describe attributes of the software part
ing the guidelines, discuss the relationship such as author, hardware dependencies,
between our reusability guidebook and the execution time on a particular
STARS Application Area, and outline plans configuration, and so forth which
for future work. further assist users in deciding whatsoftware is appropriate.

2. Our Approach To Achieving Reusability The apparatus for storing and managing
software contributes greatly to its finda-

Our approach to reusing source code bility. That apparatus includes a
centers around reusable components, written software base management system and
as Ada packages, classified for both browsing intelligent schemes for classifying
and retrieval, and residing in a library or soft

182

0

software base are successful without admonitions. In general, the characteristics
being frustratingly long. listed in this section are measurable or judg-

It must be significantly less costly to able qualities that software should possess in
find software and reuse it than to order to meet the metacharacteristics. We
recreate it. Both the specifications and have proposed characteristics that are statisti-
the apparatus for managing the reusable cally measurable or judgable today or will be
software must support relatively low measurable/judgable once we have more
(human and machine) overhead for experience with reusable software. For
storing software and searching for it. example, today we can measure if software is

free from hidden side effects. However, we
(2) Once found, software must be under- cannot judge whether software has the right

stood enough to be reused. balance between generality and specificity.

This requirement involves both the Only when software has been reused for
some time, we will be able to judge this qual-software part's specification and, if ity.

code is to be modified, the way in
which it is coded. There are judgments The characteristics listed below are also
to be made about what attributes of a reuse-specific; using them will produce
software part reusers need to know in software that is designed and coded a priori
order to decide whether the software for reuse. "Good" software engineering prac-
meets their needs. tices will contribute to reuse but will not

. If the software is to be modified, it specifically make software reusable.
must be engineered so that reusers can

0 examine the code and make changes Our guidebook only briefly discusses an
that do introduce errors or unwanted important aspect of reusability domain or
side effects, and that do make the application specificity. We expect that appli-dsied efertis, thatdomakecation specificity will be a major factor ind r aroenabling software reuse [FRANKOW-

(3) Once found and understood, it must be SKI85B]. However, just as all software
feasible to reuse the software. intended for reuse must be built using good

Software that can be reused- software engineering practices, it must be
built using application neutral basic reusabil-

o is built for reuse - constructed under the ity guidelines in addition to application
constraint that it will be reused. specific guidelines. The characteristics listed

below are those underlying guidelines for
o is fit for reuse (i.e., is a "plug- compatible" reusability across application areas.
part)-composable with other code in such a
way that it neither interferes with that other In our guidebook, we post 15
code nor allows itself to be interferred with. language-independent characteristics of reus-

able software. For the purposes of this
o displays conceptual clarity or appropriate- paper, we list all characteristics and highlight
ness - presents a useful abstraction (such as a #4: Component is designed as object-

* table, a database, a sensor or a stack) at an oriented; that is, packaged as typed data with
"appropriate" level, procedures and functions which act on that

data.
Each of the software characteristics

listed in Section 4 is a means of achieving
one (or some) of these metacharacteristics. 4.2 List of Characteristics
Figure 1 below relates each of the proposed

* characteristics to the metacharacteristics it (1) Interface is both syntactically and
promotes. semantically clear [STANDISH84]

%0 4. Reusability Characteristics (2) Interface is written at appropriate

4.1 Criteria For Reusability Characteristics (abstract) level.

The reusability metacharacteristics in (3) Component does not interfere with its
-, ~ 'Section 3 are qualitative "good practice" environment;.

"V 183

% o. Po

(4) Component is designed as object- (8) Component exhibits high cohesion/low
oriented; that is, packaged as typed data coupling [BERGLAND81].
with procedures and functions which act
on that data. (9) Component and interface are written tobe readable by persons other than the
An object orientation to code involves author.

mapping of "solutions" to our human

view of the "problems" the software is (10) Component is written with the right
trying to solve [BOOOCH831. Our balance between generality and
human view involves objects, attributes specificity [MATSUMOTO84].
of these objects, and operations on
objects expressed in a noun/verb sense (11) Component is accompanied by sufficient
in English. An object-orientation to documentation to make it findable.
software aids understandability since
solutions to problems are expressed in (12) Component can be used without change
our "human terms. or with only minor modifications.

Reusable software should act on objects (13) Insulate a component from host/target
explicitly. What we are advocating here dependencies and assumptions about its
is a clear definition and method of "act- environment; isolate a component from
ing" on objects. All actions or opera- format and content of information
tions on objects should be defined as passed through it which it does not use.
subprograms (or their equivalent) with
the objects as parameters. Further- (14) Component is standardized in the areas

0 more, the objects or at least their types of invoking, controlling, terminating its
should be "packaged" as close to the function [FONES84], error-handling,
definition of the operations on them as communication and structure
possible. Ideally, they should be pack- [LANIERGAN84].
aged together to ease location, refer- (15) Components should be written to
ence, and use. To promote reusability exploit domain of applicability (NEIGH-
it is better not to use global data that is BOR84]; components should constitute
changed implicitly by routines to which the right abstraction and modularity for
it is visible but to pass the data to rou- the application.
tines as parameters making it explicit
that (1) these routines are Figure 1 relates each of the proposed
actors/operators on the data and (2) characteristics to the metacharacteristics it
that is just how this data will be treated promotes.
(e.g., as input only, as a constant, and
so forth). 5. Reusability Guidelines

%" Based on Section 5 of [RAPIER86], we,"-.% In this section we provide 7 Ada-
. will define operations on data in context

as implementations of behaviors that specific guidelines from our guidebook that
[characterize objects, the objects being support reusability characteristic number 4

defined by the set of all behaviors asso- pertaining to object-oriented software.
ciated with them. [FRANKOWSKI86A] also discusses use of

an object-oriented paradigm to build reusable
% (5) Actions based on function results are Ada software.

made at the next level up.
5.1 Context For Guidelines

* (6) Component incorporates scaffolding for

use during "building phase". There are, in general, two kinds of
reusable software parts - directly reusable

(7) Separate the information needed to use parts and indirectly reusable parts. Directly
software specification, from the details reusable parts are those whose behavior or
of its implementation, its body. effect is catalogued, that is, "advertised" in

184
0•

the catalog(1) of reusable software that parts. It is the specifications of operations on
developers use to determine what software data as well as data contained in these pack-
parts are available for reuse. Directly reus- ages that are directly reusable. These opera-

9able parts are what developers search for and tions are in effect interfaces to reusable
choose. Indirectly reusable parts support objects. See Figure 2.
directly reusable parts; they provide the
environment, the ancillary definitions and G10-2: Only "first level" nested nonpackage
enairona nth the recly eiitis nd entities in library unit package specifications
data that the directly reusable parts need in form the basis for "catalogued" directly reus-
order to perform correctly. In the ideal case,
indirectly reusable parts are incorporated into
the program under construction automatically
by a software base management system. Ada packages can be nested to any level

allowed by a compiler implementation, and
nesting can be used as desired for imple-

(1) A catalog can be an automated software menting reusable components. However, for
repository's classification scheme, a list each of "cataloging" there should be a practi-
of component names and descriptions cal limit to the level of nesting of packages
on paper, or even a rumor the that encapsulate reusable software. G10-2
developer hears from a colleague down simply states that only first-level data and

. the hall. specifications for operations on data form the
basis for reusable software and are "catalo-
gued". Data and operations within nested

Reusable parts should be objects. As packages are not catalogued as reusable even
abstractions, objects have properties (data) though they are accessible to client programs
and allowable operations on this data. The according to the Ada language definition.
Ada package should be the realization or con-crt mpeettino heojc asrc Nesting can easily complicate the environ-
crete implementation of the object abstrac- ment or context for reusable software. For
tion. Types and data objects/ variables example, nesting provides an environment
implement data; subprograms/tasks imple- for declaration order information hiding, and
ment operations. Packages bundle these visibility rules which is hard to reuse and to

'." things up nicely. understand, and in which operations and data

are hard to classify. Classifying only entities
5.2 Sample Guidelines that are visable at the first level as reusableThme fodelloigg eine s toperations on data in context will avoid thisThe following guidelines taken from complication.

our guidebook prescribe how to write reus- G10-3: Use secondary unit package bodies,
able Ada software satisfying an object- package specifications containing only data,
oriented paradigm. Guidelines G10-1, G10- and subunits corresponding to first-level
2, and G10-3 provide a specific scheme for package body nested stubs as the encapsula-
writing reusable Ada software in terms of tion mechanism for indirectly reusable
Ada compilation units. Guidelines G6-2, software.

0 G6-3, G7-2, and G9-2 support this scheme
for Ada subprograms, packages, and tasks.
We encourage use of generic subprograms This guideline, along with G10-I, states
and packages in compliance with these guide- that all reusable Ada software should be writ-
lines. Please refer to our guidebook for ten in terms of packages. In particular, sub-

%r further details on the use of generics, programs (with the exception of main sub-
-" programs) and tasks should be written either

* G10-1: Use library unit package specifications directly within the declarative parts of library
as the encapsulation mechanism for directly unit packages or in that context through the
reusable software (i.e, data and operations on use of body stubs. In Ada, main programs

.the data). must not be contained in packages. How-
ever, we do not treat them as reusable. It is

*.. Library unit packages are our "unit of the library unit packages they reference that
reusability" with packages specifications as the are reusable. Seconda-y unit (library unit)

_ . standard unit for directly reusable software package bodies are indirectly reusable.

185

Subprograms and tasks in the context of specific details of these abstractions not
secondary unit packages (e.g., package needed by client software.
bodies) are indirectly reusable. Library unit
package specifications containing only data Simply stated, decide what object
are indirectly reusable as well. See Figure 2 abstraction a package should implement,
to clarify the distinction between directly and decide what the interface to this abstraction
indirectly reusable software parts. should be, and implement these as visible

G6-2: All reusable subprograms except a specifications for operations on data in the
main program must be written within a public part of a package specification. Decide
library unit package. what the implementation structure of the

abstraction should be and implement this and

In view of guidelines G10-1 and G10-3 all other details in the private part of the

reusable subprograms must be written in package specification and a corresponding
packages. These packages and their contents package body. This separation benefits the
are the reusable software in a software re- package itself and its environment. The less

pository; they are "glued" together by a main "connection" a package has with the outside

program which is invoked from the environ- world (e.g., the smaller the visible part of a

ment. If this gluing is automatic or easily package specification), the lower its coupling

specifiable in a very high-level-language, with other modules. Once modules in a

main programs do not have to be kept in a package's environment begin to depend on
repository. It is the reusable parts that they particular visible entities that really should

glue together that are important. However, if have been hidden, the package becomes less

* a main program glues together a "system" and less insulated from its environment.
which can be viewed as a potential com- There are two strategies for providing
ponent of other systems, then that program abstractions as reusable objects [BOOCH85J.
should be put in a package which will be These are: (1) using packages to implement
catalogued as directly reusable software and abstract data types and (2) using packages to
should be called from "another main pro- implement abstract state machines.
gram.

G6-3: Use subprogram declarations to specify (1) Abstract Data Types: Provide the basis
interfaces to reusable objects. Use subpro- for multiple "public" reusable objects
gram bodies to implement these interfaces with common operations on implemen-
and properties of the objetts. tations of the operations in correspond-

ing package bodies. The object abstrac-
The interfaces to reusable objects tion can then be reused by client

specified in subprogram declarations comprise software (multiple times) by declaring
a name, parameters of particular types and variables (external) to the package and

.r. modes, and return types for functions. Sub- using the operations provided by the
program bodies contain the executable code package to manipulate these variables.

i'. fo. zzusable objects. This code performs use-
* ful work. We are saying that the use of both (2) Abstract State Machines: Provide sin-

subprogram declarations and bodies is impor- gle sharable, "private" reusable objects
tant. The only exception to this guideline is gne sharaien "rvtese objectsr' and operations on these objects. Do
a main program callable from the environ- this by encapsulating types of reusable
ment rather than by other software. In this objects in package bodies. This limits
case, a body alone is sufficient. This guide- client software from declaring and using
line is related to G7-2 prescribing that pack- multiple instances of the reusable
age specifications implement interfaces to objects since their types are hidden.
object abstractions and their bodies imple- Provide specifications for operations on
ment specific details of these abstractions.,'reusable objects in package

G7-2: Use package specifications to specify specifications. Provide variable declara-
the interface to object abstractions; use pack- tions for the reusable objects and imple-

* age bodies to encapsulate implementation- mentations of operations on the objects

186

in the case where the types of the reus- (2) a package body for the repository
able objects are not "composite". These Menu-Manager, and
operations may contain parameters if
the types of the reusable objects are (3) a procedure subunit for one of package
composite," and "atomic" public types Menu Manager's nested subprograms,
from which these types are constructed CreateInitialMenu. The object
are declared in package specifications. abstraction implemented in this package
Client software can only reuse the is a menu and associated menu stack
specific instances of object abstractions with operations including
contained in these packages. This Cete onitalin isplayMnu

software can only indirectly access the and Process_Menu-Response. Package
variables implementing reusable objects Menu-Mnager implements an "abstract

pthrough interfaces provided by visible data type" by exporting menu-oriented
M subprograms specified in the package types and operations. It also imple-

specifications. ments an "abstract state machine" in

G8-2: Use task declarations to specify inter- that it contains a nonexportable stack of
faces to reusable objects. Use task bodies to menus in its body.
implement these interfaces and properties of
the objects. In the examples, package specification

Menu-Manager and the type and procedure
This guideline is similar to guideline declarations contained in its visible part are

G6-3. For tasks, as compared to subpro- directly reusable. Its private part type
grams, interfaces are concerned not only with declarations are indirectly reusable. Package
parameter passing but also with synchroniza- body Menu-Manager is indirectly reusabie as
tion. While subprograms can optionally have is its nested data declarations and subpro-
a separate declaration and body, tasks must grams. The subunit for procedure
have both declarations and bodies. Tasks and Create InitialMenu is indirectly reusable
their entries, just as subprograms, should be even though it is compiled separately.
treated as interfaces to reusable objects.

These example modules are provided
primarily to illustrate use of our "object-

6. Example Ada Modules oriented" guidelines to write reusable Ada
The example Ada modules below are software. The modules also illustrate other

taken from the design of a reusable software guidelines contained in our guidebook, most
repository developed at the Honeywell Coin- noticably, those pertaining to a standard form
puter Sciences Center. This repository sup- for reusable software parts.
ports retrieval, submission, and maintenance
of categories of inventory items stored in a
database management system. Its user inter-
face is menu oriented. Specifically, the
modules below are:S

(1) a package specification for the reposi-
tory Menu-Manager,

0

"V

0

187

EXAMPLE: MODULE 1

with DATABASEINTERFACE;
package MENUMANAGER is

-- Revision History: Created 2/20/86 P. Stachour
-- Purpose
-- Explanation: Provide data structures for and operations on

repository menu objects.
-- Keywords: menu, menu-manager

-- Associated Documentation: Design for Honeywell Reusable Software
Repository

-- Diagnostics:
MENU MANAGEMENTERROR : exception;

Packages: None

-- Data Declarations:
-- Types:

type MENU is private;
type MENU NUMBER is range 1..100;
type MENU ITEM is range 1..55;

-- Objects: None

-- Operations:
Subprograms:

procedure CREATEINITIALMENU (MNUMBER : out MENUNUMBER);

-- Purpose:
-- Explanation: Create initial repository menu.

Keywords: initialmenu, createinitialmenu.

-- Parameter Description:

-- MNUMBER : Menu number associated with initial menu.

-- Associated Documentation: same as above.

procedure DISPLAYMENU (MNUMBER: in MENUNUMBER);

-- Purpose:
-- Explanation: Displays specific menu.

* -- Keywords: Displaymenu.

-- Parameter Description:
-- M_NUMBER : Number of menu.

-- Associated Documentation • same as above

188

0I I I 1 1 1 1 1

procedure PROCESS MENU RESPONSE (M NUMBER: in MENUNUMBER;
MENU-ITEM_S'ELECTED : in MENU-ITEM;

EXIT: out BOOLEAN
-- Purpose:
-- Expha.iation: Process response specified by menu selection.

This processing may involve a call to
DisplayMenu and ACCEPTMENURESPONSE and a
recursive call to PROCESSMENU_RESPONSE.

-- Keywords: menu-response, process menu response.

-- Parameter Description:
-- M NUMBER : Number of menu.
-- MENUITEMSELECTED : Specific item from menu selected.
-- EXIT : Indication to exit menu system.

-- Associated Documentation: Same as above.

Tasks: None -- Private:

private
type MENU is ... ,

end MENU-MANAGER;

1890i

EXAMPLE: MODULE 2

with INVENTORY-ITEM, CATEGORY, USER, TEXT_10;
with USERSTATE, BULLETIN BOARD, COMMAND-PROCESSOR, FILE SYSTEM,

SYSTEM SUPPLIED UTILITIES;
package body MENUMANAGER is

-- Revision History: Created 02/21/86 P. Stachour
-- Purpose:
-- Explanation: Provide data structures for and operations on
-- repository menu objects
-- Keywords: menu, menu_manager

-- Associated Documentation: Design for Honeywell Reusable
Software Repository

-- Assumptions/Resources Required: None
-- Side Effects: None
-- Diagnostics: None
-- Packages: None
.sp 0.4v
-- Data Declarations:
-- Types:

4l type MENU-ACCESS is access MENU;
type MENUSTACKELEMENT is

record
MENU POINTER • MENU ACCESS;
MENU_FILESYSLOCATION : STRING (1.. 100);
end record;

-- Objects:
MENU STACK :array (1..31) of MENUSTACKELEMENT;
MENU STACK-INDEX : NATURAL :-0;

-- Operations:
Subprograms:
procedure CREATEINITIALMENU (M NUMBER : out MENUNUMBER)

is separate;
procedure DISPLAY MENU (M NUMBER: in MENU NUMBER) is separate;
procedure PROCESS-MENURESPONSE (MNUMBEI : in MENU-NUMBER;

MENUITEMSELECTED : IN MENU ITEM;
EXIT : out BOOLEAN)

is separate;

. -- Other operations on MENU-oriented parameters.

-- Tasks: None
-- Initialization:

begin

1I@

190
4

exception
when INVENTORYITEM.INVENTORY ITEMERROR -

when others -I

raise MENUMANAGEMENT ERROR;

end MENU-MANAGER;

191

EXAMPLE: MODULE 3

separate (MENU-MANAGER)
procedure CREATEINITIALMENU (MNUMBER : out MENUNUMBER) is

-- Revision History: Created 2/21/86 P. Stachour
-- Purpose:
-- Explanation: Creates initial repository menu by reading data
-- for it from a host file and placing it on the
-- MENU MANAGER menu stack.
-- Keywords: INITIAL_MENU, CREATEINITIAL MENU

Associated Documentation: Design for Honeywell Reusable
Software Repository

-- Parameter Description:
-- M_NUMBER : Number of menu created.
-- Assumptions/Resources Required: None
-- Side Effects: None
-- Diagnostics: None
-- Packages: None

* -- Data Declarations:
-- Types: None
-- Objects:

FILEDESIGNATOR:FILESYSTEM.FILENAME: ="DRAO [SOURCE] FILENAME.TXT";

-- Operations:
-- Subprograms: None
-- Tasks: None
-- Algorithms:

begin -- CREATEINITIALMENU

-- read from host file, create menu, and place on MENUS I ACK;
increment MENUSTACKINDEX by 1;

M_NUMBER :- MENUSTACKINDEX + 1;

exception

V when others -I

end CREATEINITIALMENU;

192
0

,: 1_ . = - , =,= I. .. : -- , -=. -. - = , .w -h , .- yi= , , , .: .j , .k+; . .r .t * W W, ra r a n :.. a ., _ s, a ,, p. :

t - Area enable us to evaluate our reusabilitychr-

7. Relationship To STARS Application experiments and the guidebook review will
Areaenale s toevauat ourreuabiitycharac-

teristics and guidelines and refine them
The STARS Application Area, in its accordingly.

series of Application Systems and Reusability
Workshops, is working toward definition of a 9. Acknowledgements
reusability guidebook. This work is being
done by four groups: Part Taxonomy/ I would like to thank a number of peo-
Requirements/Metrics, Incentives, Library, pie from the Honeywell Computer Sciences
and System/Design Integration. Our work at Center who assisted me in preparing this
Honeywell on a reusability guidebook for paper: Jacklyn Lipscomb for her technical
RAPIER is relevant to the STARS reusability editing, Paul Stachour foi the example Ada
effort in the following ways: modules appearing in Section 6, and Elaine

o Our guidebook can serve as the framework Frankowski for her reviews.
for major sections of the Application Area
guidebook; Bibliography

. o Our reusability characteristics compliment
and some areas extend the [BERGLAND81] G.D. Bergland. "A Guided
Part/Taxonomy/Requirements/Metrics Tour of Program Design Methodologies,"
Group's reusability model work and IEEE Computer, Vol. 14 No. 10, October
specifically define reusable Ada (source code) 1981, pp. 13-37.
parts; [BOOCH83] Grady Booch. "Object-Oriented

o Our reusability guidelines implicitly pro- Design," Tutorial on Software Design Tech-
vide criteria for choosing reusable Ada niques. Ed. P. Freeman and A. Wasserman,
software for reuse. They support measurable 4th edition (Catalog Number EH0205-5),

, reusability characteristics and as such can and IEEE Computer Society Press, 1983.
should be the basis for reusability metrics.

P> This is also relevant to the [BOOCH85] Grady Booch. "ACM SIGAda
-T m ue. Tutorial: Ada Methodologies," ACM SIGAda'.Part/Taxonomy/Requirements/MetricsMetnJl30195

Group; Meeting, July 30, 1985.

o Our reusability guidelines provide a [DOD83] United States Department of
methodology for building reusable Ada Defense. Reference Manual for the Ada
software which is appropriate to the Language: ANSI/MIL-STD-1815A, United
System/Design/Integration Group; States Department of Defense, January 1983.

o Our reusability guidelines imply a particu- [FRANKOWSKI85b] Elaine N. Frankowski,
lar cataloging scheme for libraries of reusable Christine M. Anderson. "Design/Integration
software parts and acceptance criteria for Panel Report, "Proceedings of the STARS

, these parts before insertion in the libraries. Reusability Workshop, April 1985.
This is relevant to the library Group.,. ,.[FRANKOWSKI86a] Elaine N. Frankowski.

%. "Why Programs Built From Reusable
8. Future Work Software Should Be Single Paradigm,"

In the upcoming year we plan to com- Proceedings, STARS Applications System
plete the remaining chapters of our reusabil- and Reusability Workshop, to appear (March

* ity guidebook and refine/add to the Ada 1986).
examples it provides. Guidelines from the
guidebook will be used to construct reusable [HOROWITZ84I Ellis Horowitz, John B.
software components for RAPIER's software Munson. "An Expansive View of Reusable
base management system. We also plan to Software," IEEE Transactions on Software
circulate the guidebook for review. Feedback Engineering, Vol. SE-10, No. 5, September

• we receive from RAPIER prototyping 1984, pp. 477-487.

v

193

[ISS1861 International Software Systems, Inc.. from Reusable Components," IEEE Transac-
" "PSDL: Prototype System Description tions on Software Engineering, Vol. SE-10

Language," ISSI Technical Report, unnum- No. 5, September 1984, pp. 564-574.
bered, January 30, 1986.

[RAPIER86 RAPIER Project. "Final
[JONES84] T. Capers Jones. "Reusability in Scientific Report: RAPIER Project (Contract
Programming: A Survey of the State of the No. N00014-85-C-0666," Honeywell Com-
Art," IEEE Transactions on Software puter Sciences Center, Golden Valley, MN,
Engineering, Vol. SE-10 No. 5, September March 1986.
1984, pp. 488-494.

R[STANDISH?41 Thomas A. Standish. "An[LANERGAN84] Robert G. Laneigan, Essay on Software Reuse," IEEE Transactions
Charles A. Grasso. "Software Engineering on Software Engineering, Vol. SE-1 No. 5,

q with Reusable Designs and Code," IEEE September 1984, pp. 494-497.
Transactions on Software Engineering, Vol.
SE-1OD, No. 5, September 1984.

[STARS83I STARS. Software Technology for
[MATSUMOTO84 Yoshihiro Matsumoto. Adaptable, Reliable Systems (stars) Program
"Some Experiences in Promoting Reusable Strategy, U.S. Department of Defense, April
Software: Presentation in Higher Abstract 1983.
Levels," IEEE Transactions on Software
Engineering, Vol. SE-10 No. 5, September [STDENNIS86] Rick St. Dennis. "A Guide-
1984, pp. 502-513. book For Writing Reusable Source Code in

* Ada (R), "Honeywell Computer Sciences
[NEIGHBORS84] James M. Neighbors. "The Center Technical Report, Version 1.0, March
Draco Approach to Constructing Software 1986.

4'1

-19
I,-.

' lwO
l 1"," "." " , -. ,, .. ~ r',". ',, #' , p" -"- ,.rr. i ."",

(o~~fTCNLG O OPAL LSTARS) WORKSHOP MARCH 24-27 1986C1U) NAVAL RESEARCH LAB

1UNCLASF IED WAHNTND A 6F/G
12/5 U

IFh~ hEEi

iomhhhmomhmmlEhhhhhhhsonhOlsE
*mhhhh.h

- *~111110

IIIII'

ALTERNATIVE TECHNOLOGIES FOR
SOFTWARE REUSABILITY

Mark Simos

System Development Corporation
Software Technology

Research & Development Division

Introduction application programs (IEEE). SDC's Software
Technology Research and Development

Beginning with Mcllroy's call for a department is addressing the problems of
software components industry (Mcllroy), dis- software reusability with a number of
cussions of software reusability have been different programs, with particular focus on

S strongly influenced by the compelling para- program generation technology and very
digm of hardware "parts". While the compar- high-level application-specific languages, or
able notion of discrete software "parts" (in ASLs. In this report, we will describe some
the form of programs or subroutines) has of our experiences with this technology and

* certainly had beneficial impact on the discip- its implications for reusability. We also touch
line of software engineering, it has also on techniques from the field of artificial intel-
tended to limit our conception of reusability ligence, an area that has been less discussed
in the context of software. An important with regard to software reusability. The Al
message emerging from current research and (Logic-Based Systems) department at SDC
in particular from the STARS Applications has developed some innovative approaches in
Area Workshops is that design for reuse is an the area of knowledge representation and

Yessential component of a long-term strategy expert systems development that are
for software reusability. Yet the processes of integrally connected with issues of software
modifying, transforming or generating reuse.
software components are resources just as
reusable as the concrete software parts them- General Approach
selves, if these "active elements" of software
development can be captured in the form of Our long-term objective is to develop a
tools such as program generation systems methodology for identifying and characteriz-
(Horowitz). This reuse through regeneration ing potential high-payoff domains for
effectively fuses the design and "manufac- software reuse, and a set of criteria for select-
ture" of software in ways that have no clear ing the appropriate technology, or mix of

- analogies in the hardware sphere. (Note, technologies, to capture the commonality
though, that such developments as silicon within these domains. We believe that cer-
compilers and VLSI design libraries are tain technologies for software reuse are best-
beginning to provide similar flexibility in suited to application domains with particular
hardware technology. This suggests that characteristics. As a starting point, we are
solutions to problems now particular to working to define an integrating framework,
software reuse should eventually be applica- or taxonomony, that usefully discriminates

* ble across the full hardware-software spec- among diverse technical approaches to
trum.) software reuse, including:

There is currently much ongoing (1) conventional techniques of reuse (such
research on a broad range of technologies, as ad-hoc reuse and code copying,
from very high-level languages (VHLLs) to language features supportive of reusa-
automated software parts composition sys- bility, and software libraries)
tems, that could contribute significantly to
the overall goal of decreasing the amount of (2) application-specific languages and appli-
hand-written code needed to implement cation generators

195

A

0

(3) knowledge-based or expert systems services. There are a number of common
features to the applications where this

(4) various hybrids of the above approaches approach has succeeded:

Today lists and arrays are standard (1) The libraries are organized around
alternative data structures that one selects for specific application domains.
use based on criteria such as time/space

4 tradeoffs and mode of access. As alternative (2) There are standard interfaces, calling
reusability technologies mature, the choice of and naming conventions that effectively
a library of discrete software parts, an appli- make the library a uniform set of ser-
cation generator or an expert system will vices.
similarly be made on the basis of characteris-
tics and requirements of the intended applica- (3) The routines in the library encode
tion domain. After briefly describing our operations for which there is a known
work in these areas, we will offer some tenta- and fairly standard algorithm. The
tive conclusions about useful criteria for functionality of the routine does not
evaluating the proper 'fit' between application vary depending on dynamic characteris-
domains and key technologies, tics of the point of call.

Conventional Approaches to Software There are a number of critical issues to
Reusability be faced in developing large libraries of reus-

able qoftwarc co~iiponents, problems such as
Conventional approaches to software configuration control quality assurance,

reusability seek to reduce the amount of code cataloguing and documentation. The
'4 that must be written by hand by isolating definition of syntactic and semantic interfaces
-. .fragments of application software as pieces is onc of the main technical barriers to the

that can be shared and reused by many effective reuse of software (Batz83). Though
specific applications. This kind of reuse can it is easy to think of software libraries as
occur in :everal forms, including ad-hoc "current" or certainly "near-term" technology,
reuse of code (sometimes called "scaveng- developing libraries on a large enough scale
ing"), use of language features that are sup- to really impact productivity will push the

Sportive of software reuse, and software state of the art, especially of database tech-
libraries. nology, as hard as program generation tech-

4S' .4 niques.
There are severe difficulties with ad-hoc

reuse (i.e., reuse of a component that was Besides the problems stemming from
not written with reuse in mind) that nullify inadequate technology, there are also

,1 most benefits associated with true reusability. domains where maintaining a library of con-
It is hard to estimate the amount of time and crete software subroutines is not a good fit
effort involved in modifying the code for a with the requirements of the domain. One
new application, or, in fact, whether it would example is simple, low-level functions that
be cheaper to write the code from scratch. require tailoring according to a large number
Subtle discrepancies between the require- of parameters. If the options for selecting
ments of the original and the retargeted the right version of the routine vary orthogo-
application can lead to decreased reliability or nally, one could quickly wind up with an
efficiency of the final system. Nevertheless, exponential number of components to be
for some situations ad-hoc reuse may be stored in the library. Some form of program
cost-effective, particularly when there is not generation from specifications is needed for
much potential for recurring applications, or these applications.

* when requirements of the new application
can be modified to accomodate less flexible Admittedly, many problems associated
features of the original application. with ad-hoc reuse or standard subroutineSf e t g alibraries have been addressed by advanced

Libraries of standard subroutines have features of Ada*, which was designed with
" achieved some success in certain application reusability as a clear priority. SDC is directly

domains, such as mathematical routines, supporting the Ada movement through the
graphics packages, or operating system formulation of Ada-based methodologies,

196

, 0

studies in reusable Ada components, allow typical sequences of actions to be
development of Ada tools, automatic genera- specified at a higher level. Arguments that
tion of Ada software from a high-level must be provided explicitly in a call to a
specification and active participation in the library subroutine may be taken implicitly
Ada community. from context in an ASL specification. Also,

an ASL processor can perform more exten-
The use of Ada features such as pack- sive static checks for semantic validation than

ages, generics, strong typing, default parame- is possible with embedded subroutine calls.
ters, and tasking to support reusability have Thus, an AS! is a particularly useful inter-
been described extensively elsewhere. These face to a set of services providing access to a
features of Ada have significantly extended persistent data structure such as a database,
the domains in which reuse of static software where there are strict integrity constraints on
components will be viable. It is interesting to allowable sequences of operations. The syn-
note, for example, that features such as gen- tax of the ASL can disallow invalid sequences
eric program units have shifted functionality of operations that would have to be defected
onto the Ada compiler that previously would at run-time if called as a sequence of subrou-
have required program generation techniques. tine calls from a general-purpose program-
However, because Ada has been standard- ming language.
ized, any further extensions to these facilities
for generating Ada code at compile time can- We believe ASLs are a more feasible
not be part of the Ada compiler per se. near-term alternative than very high-level

general-purpose specification languages
* Application-Specific Very High-Level (Cheatham). Because ASLs use application

Languages terminology, they are less abstract, henceeasier to use and maintain than formal or
Application-specific languages (very algebraic specifications.

high level lparticular application area) offer a useful pro- An ASL is useful by virtue of its close
grammatic interface to reusable software connection with domain terminology of the

modules. Such a language can act as a target domain, its narrow focus, its non-
tailored query language for accessing a reposi- procedural level of specification, and the
tory of reusable algorithms within a narrow guaranteed correctness of its transformation.
domain, as an automated parts-composition Languages of this sort can serve as the input
system, linking together static routines from specification to two kinds of generation sys-
a library, or as a parts-generation system, tems:
creating instances of a given subroutine
optimized to the requirements of each (1) a highly-parameterized generic applhca-
instance of use. Thus it can provide both the tion program, which simulates the
flexibility and generality of a highly behavior of many special-purpose appli-

A parameterized set of routines, and the cations by performing sophisticated
efficiency of tailored code. run-time decision-making;

• ASLs will have highest pay-off in nar- (2) an application generator, which
rowly focused applications areas where many transforms the specification into a
slightly customized versions of a single basic tailored application program in a lower-

, program are created from large, well- level programming language.
understood libraries of basic functions *Ada is a registered trademark of the
(Standish). ASLs permit the direct embed- U.S. Government. (AJPO)

* ding of application-specific methodology in
the generation system. ASLs can be easier In practice, the two options are similar,
for both programmers and computer-naive except that the former embeds the generation
application specialists to use than general- expertise at compile time, the latter chooses
purpose high-level languages, because they the proper actions at run-time. A compiled
allow tasks to be specified in a non- implementation, or application generator,

* procedural language close to the terminology might be more suitable for stable applications
of the application domain. In addition, they that will be run with exactly the same

197

parameters a number of times. Also, since SSAGS require less interactive debugging and
the output of an application generator need can be maintained from single, reusable
not be a program in the ordinary sense, appli- specifications. SSAGS has successfully been A7

cation generators can be useful in generating used to produce several translators, including
multiple output files that must be kept syn- an Ada-to-Diana translation system and a
chronized from a single high-level configuration ASL for Burroughs XES50 sys-
specification. An interpreted implementation tems. We are currently using SSAGS to
is more appropriate for interactive develop- implement an ASL for message format vali-
ment of specifications and/ad-hoc or one- dation in the message processing domain. In
time usages of the generation system. We addition, . the SSAGS translator itself is
refer to both highly parameterized applica- specified in and generated by SSAGS. We
tions and application generators as believe that use of a translator generator sys-

N. application-specific languages (ASLs), tem like SSAGS, together with the strategy
because the use of high-level terminology of defining small languages for narrowly
from the application domain is a common defined domains is a key to the cost-effective
strategy of both approaches. implementation of ASLs for reusability.

A Meta-Generator for ASL Systems

For many DoD applications, the Expert Systems

development of application-specific languages In the context of software reusability,
is technologically feasible, but the develop- domain analysis usually involves examining a
ment cost has seemed prohibitive. These collection of application programs addressing
development costs are steadily decreasing, a similar class of problems (e.g., air traffic
however, as compiler specification and gen- control or business systems) in order to iden-
eration techniques approach the stage where tify potential reusable software components
entire tools in the language-processing or algorithms (CAMP). It may seem out of
domain can be automatically generated from place to discuss expert systems technology in
their specifications. SDC has developed a this context. Typically, expert systems auto-
generation system for tool-building known as mate what was previously a largely human
the Syntax and Semantic Analysis and Gen- activity; domain knowledge is gleaned from
eration System (SSAGS), a Ada-based gen- human experts and often can't be reduced to
eraticn system based on attribute grammars deterministic algorithms. Hence, there is less
(Knuth). Integrated with a standard lexical likely to be a body of conventional programs
analyser generator and parser generator, supporting an application domain being con-
SSAGS accepts and validates an attribute sidered for expert system support.
grammar specification of the semantics of a
language, and automatically generates a But the presence of conventional appli-
semantic evaluator for the specified language. cations is not a dependable indicator of

whether an expert system approach is most
SSAGS provides many advantages for appropriate for a domain. A currently unau-

the implementation of ASLs. The use of tomated application area may be quite amen-
attribute grammars within SSAGS permits able to conventional software techniques (or
the specification of language semantics in a may not be worth automating at all). Con-
very clear - and hence less error-prone - versely, for some problem domains currently
fashion. In addition, SSAGS is based on supported by conventional software a
ordered attribute grammars (Kastens), a re- significant increase in software reuse may not
stricted class of attribute grammars that allow be feasible through a parts-library or program
a language specifiction to be statistically generation approach alone. Knowledge-based
checked for valid semantics. To take full techniques and heuristics may be the level at
advantage of this static validation, SSAGS which commonality can best be factored intofunctions as an application generater in the the domain.
sense described above, unlike some interac-
tive attribute-grammar based systems such as For example, if choice of the appropri-
the Cornell Program Synthesizer (Teitel- ate algorithm for a given problem situation
baumgl). Thus translators implemented in requires extensive ,ematic kaowlcdge of the

198

application domain, knowledge representation knowledge bases about various Burroughs
techniques may be the most suitable way of systems products, and the sales personnel
encoding this knowledge. In another case, who use the automated configurator applica-
the performance needs of the domain may be tion to prepare complete and accurage
stringent enough that subroutines, to be configurations for customers. The same
usable, must be optimized for the point of knowledge base used by the configurator
use. In such domains, knowledge-based pro- application could potentially be used for
gram synthesis or program transformations diverse applications, including design revi-
may be a prerequisite to effective use of sion, manufacturing scheduling, system pric-
software parts. Note that these situations ing and maintenance. Though there may be
might utilize knowledge-based technology in little procedural commonality between the
two very different ways. various applications, we gain reusability by

consolidating common domain knowledge in
(1) Artificial intelligence techniques and an independent structure. While this is not

languages may be directly used within software reuse in a strict sense, it is an
the system being developed. effective reuse of knowledge that would more

(2) Artificial intelligence techniques may be traditionally be embedded in application

used in combination with library access, software (and hence rewritten anew for each
* program generation, parts composition application).

to facilitate reuse of conventional This separation also allows different
software. domain experts to model individual parts of

the system independently. Here the domain
S In either case, expert systems provide model turns out to share some of the advan-

reusability in ways that are not available with tages we associate with ASLs: because the
other techniques. (We will avoid discussion domain model is defined in non-procedural
of functional or logic programming language terms, it is easier for the model to be
features that support reuse, since these independently maintained or created by appli-
advantages would be confined to direct Al cation specialists who are not expert systems
applications.) developers.

Knowledge-based technique provide a Just as many applications can use one
means of isolating domain commonality at a knowledge base, an application can be written
more abstract level than that of concrete sub- to work off multiple knowledge bases. For
routines, or even standard algorithms and example, the functionality of the Burroughs
procedures. This allows, at least potentially, configurator can be extended without modify-
a separation of procedural from declarative ing the application, by creating a model of a
knowledge which is difficult to achieve in new system component. This is closer to our
conventional programming languages. It has intuitive notion of software reuse, since the
also been difficult to achieve this separation application can be adapted in a well managed
in many "traditional" expert systems, which way to different situations of use.
are implemented as large, unstructured sets
of rules combining conditions and actions in Extending Domain Analysis for Technology
a single framework. KNET (Freeman83), a Selection
semantic network knowledge representation
system developed by SDC, has several Our work in both program generation
features that help to partition semantic and technology and knowledge-based systems has
domain-specific knowledge-- the model of the revealed a number of similarities in the

* domain-- from the logic of applications mak- domain analysis process for these respective
ing procedural use of that knowledge. SDC areas, as well as similarities to domain
has used KNET to implement a large expert analysis performed -for the development of
system for the automatic configuration of more conventional software parts technology
Burroughs computer equipment (Free- as well (CAMP). This suggest that selection
man85). The system is intended to support of appropriate technology for an application
both the product experts (the plant domain is best done in parallel with domain
engineers), who create nnd modify the ana!ysis. and that the domain anslvsis proes

199

should be refined and extended to produce component variation (time/space,
information relevant to this task. parameterization, birding mechanism)?

For example, are components accessed
A basic model for assessing the poten- as procedures, functions, tasks, or

tial benefit of designing for reuse must pro- stand-alone programs, or a mix of
vide a trade-off of the cost of the initial these? If usage patterns are clustered
implementation, the projected number of along one axis, generation techniques
future usages for the function, the average may be appropriate. If usage needs
cost of each adaptation for reuse, and the vary widely, creation as needed and
cost of re-implementing rather than reusing storage in the library might make most
for these instances. Domain analysis to sup- sense.
port technology assessment must consider
many additional factors. The domain analyst (4) Are the parameter choices for a r utine
must look for commonality at different levels "flat" or "tree-structured"? A subrou-
of abstractions and different phases of the tine requires a fixed number of. parame-

. software life cycle, and must look for com- ters (though defaults can be provided as
mon development activities and transforma- in Ada). An ASL has more flexibility
tions as well as common static components. over parameter choices, but will still
The following list is an initial set of questions require the inputs in a batch mode. An
that might be part of this process. expert system application could prompt

intelligently and constrain choices
further in the process as a result of pre-

(I) For a typical application program, what vious decisions.
* proportion of the processing consists of

functions from the target domain? If (5) How deterministic are the functions
applications tend to be predominantly common to the domain? Are they
invocations of doman functions, (e.g., definable directly as functions in
database querying and reporting), an software, deterministic algorithms that
ASL might be appropriate. If domain can be incorporated in a generation sys-
functions are sparsely distributed, a tern, or a set of rules, procedures and
library might be better. If the relative heuristics, for which an expert system
proportions of reuse ranges widely might be an appropriate implementa-
within the applications, a layered tion?
approach offering both direct interface (6) How critical is the efficiency of the final

to the library routines and an ASL shellmay be indicated. (For example, mostcode? If performance is not critical
daabe sysitems provid e, osth a(such as in prototyping environment)
emtbed e programmatid e o conventional parts may be sufficient. Ifem bedded program m atic interface tope f r a c co s ai t a e h g , budatabase services and an independent performance constraints are high, but

aquery language, which may be inter- parameterization does not vary widely,uepreted or compiled.) it may still be feasible to store discrete
e ooptimized parts, but more ancillary

(2) For a given category of reusable parts, descriptions of optimization priorities
how large would the necessary library of and benchmarks will need to be main-
parts be? Would sophisticated catalogu- tained along with the software part. If
ing or pattern-matching tools be both performance and flexibility are
required to find the right routine in the required, program generation tech-
library? If the size or complexity of the niques may be required to achieve ade-
library passes a certain, threshold, usage quate reuse.

* will drop because of retrieval effort. In (7) How modifiable are the system require-
this situation, it might be better to par- ments? Is the customer willing to
tition the library into smaller packages, change specifications to suit existing
or encapsulate some sets of routines characteristics? If so, conventional

, with an automated part selection reuse techniques will be more applica-
mechanism accessed by an ASL. ble.

(U) What is the expected distribution of This list is by no means a complete set
usage along the various dimensions of of criteria for evaluation- nor are the

2000

interpretations of the criteria iron-clad. The database management, where typical pro-

eventual goal would be a set of guidelines grams do little but access the database and
that a software manager could apply when present the data. They are currently less
considering the (re)automation of a specific suitable for domains where generated func-
domain, in order to choose the appropriate tionality is interspersed with arbitrary compu-
technology. tation. Techniques for infiltrating code pro-

duced by application generators with hand-
Hybridizations of technologies written code (or vice versa) would greatly

expand the scope of use for these tools
Near-term (application-specific) techno- (Volkenburgh). Similarly, libraries of reus-

logies for software reuse, whether software able software should be designed to accom-
libraries or ASLs, will cover only a small pro- modate the inclusion of hand-written com-
portion of the large-scale, real-time applica- ponents and automatically generated or
tions of most concern, because these systems transformed components in a uniform (and,
represent the intersection of multiple applica- to some degree, caller-transparent) manner.
tion domains (in the restricted sense
described above), at disparate levels of for- The integration of specification andrealization and standardization. generation techniques with reusable software
Sadsnaitoparts could facilitate effective reuse of these

This does not mean that technologies parts. When a software component library
for software reusability can have only an achieves a sufficient complexity one or more
incremental impact on large system develop- ASLs could be defined as a natural and
ment in the near term. To achieve an impact efficient user interface to the library. The
on these systems adequate to the productivity selection of software parts is automatically
goals of the STARS program, it is necessary performed by the generation system, which
to support a mix of horizontal and vertical does so on the basis of its built-in knowledge

* domains; that is, both domains defined in of the syntax and semantics of the software
terms of application areas in the real world parts. Usages of the reusable software parts
(communications, air traffic control, etc.), are linked by code automatically generated

e_, and those that cut across traditional applica- from the specification. This method guaran-
• tion boundaries, such as mathematical sub- tees correct and effective usage of the reus-

routines, manipulation of data structures, or able parts. By allowing both access to the
support of software development activities. ASL interface and direct access to the under-
This strategy plays a key role in our plans to lying library of routines, maximum flexibility
incorporate ASLs as an integral component of will be available when required; the ASL can
SDC's Common Software Environment be cleaner, since it will not have to accom-
(SDC-CSE) (SDC85). We plan to define modate as many pathological 'special cases'.
ASLs tailored to several "axes" within the
environment: (1) project roles associated with Finally, we see great potential for the
software life cycle phases (programmer, application of knowledge-based techniques to
designer, requirements analyst) and skill lev- parts composition, generation, catalogueing
els; (2) architectural features of the environ- and tailoring systems. We believe the

* ment (such as database interaction, project appropriateness of this technique will increase
communication, or configuration manage- as more expertise is gained with conventional
ment) and (3) additional ASLs supporting parts management systems technology.
te specific application area ofthe project.

General Issues
Because different domains are best

* suited for particular technical approaches, this Advancing our understanding of
mix of domains must be supported by pro- appropriate matching of reuse technology to
moting alternative technologies with the most application domains is not going to solve all
potential for near-term cost-effectiveness, the difficult issues involved in reusing
and developing techniques for the hybridiza- software. Designing for reuse is inherently
tion of these technologies wherever possible. more complex than writing special-purpose
For example, application generators have applications, because one sets out to solve a
been most successfully used for areas like class of problems rather than one specific

201

ME=

problem. Thus, we should anticipate that Al department at SDC has been involved
each technology will present its own chal- with work on linking knowledge bases with
lenges in design. But also, certain problems loosely coupled conventional databases to
that have been encountered in software com- achieve the necessary separation of volatile,
ponents technology may reappear at a time-dependent information from more
different level with application generators or stable domain-dependent knowledge, Viewed
expert systems. In the interest of a realistic in this way, the database in effect functions
perspective technologies to solve, we offer a as an extremely flexible and maintainable sys-
few issues that appear common to all the tem for passing a large number of parameters
approaches described above, to the system. A program generation system

or a software parts composition system could

Application Specificity make use of the same sort of faciltity.

Software reusability becomes more Modularity
feasible, regardless of the technology
involved, in direct proportion to the The need for modularity in large sys- ;/ software's degree of specificity to a particular tems is not allayed by the introduction of
applicatio deo sisfirby t h ASLs, component libraries or expert systems.Sapplication dom ain . T his is confirm ed by the I n t a , i re s r s i s lf t n w l v ls o
domains in which subroutine libraries have Instead, it reasserts itself at new levels of
been most successful, such as libraries of abstraction. Libraries should be partio ned
mathematics, graphics, or operating system into intuitively cohesive collections of ser-
routines. The critical problems in library vices, modularized according to the same
configuration management, cataloguing and principles of good software engineering that

retrieval quickly push the state of the art are helping to make hand-written software
when the scope or complexity of the library tractable. (This conforms with the state of_ ,.acic in the standar orcmlCiyoh librariefUI*
gets too large. This is also a key to the strat- practice in the standard C libraries of UNIX*,
egy of very high-level application-specific or. the intention of the package mechanism in
languages in contrast to attempts to define Ada.)

general-purpose high-level specification We have advocated the creation of
languages. By confining !anguage scope to small narrowly defined ASLs rather than new
small, clearly defined domains, it is possible large, general-purpose languages (since our
for ASL processors to generate efficient code purpose is not to reinvent Ada). In a
of production quality. Finally, this environment where production of special-
observation is consistent with the general purpose languages for software development
thrust in the expert systems area toward con- has become economically justifiable, we must
centration on domain-specific expertise rather begin to modularize the languages in our
than general knowledge or problem-solving. environment with the same care that we

create reusable subroutines. By keeping
Separation of Volatile from Stable Informa- ASLs small, cohesive and single-function, we
tion increase the ways in which these languages

can be linked together to form new tools.
One limiting factor to capturing com- We are currently investigating the theoretical

monality in a domain is the relative degree of problems in specifying shareable sublanguage
volatility, or frequency of change, of the ASLs that can be reused in different con-
information in the domain. For example, texts. For example, an ASL for string pat-
one does not want to embed monthly pricing tern matching might be used within many
information in a program generation system other ASLs. We should be able to define it
that would have to be recompiled with each as a separate language and invoke it as such
price shift. Though the rules used in from other language specifications. Finally,
knowledge-based systems might appear to modularity in knowledge bases is a key to the
support this sort of change better than a com- tractability of large expert systems, as we
pilation system, it would appear that a have seen.
knowledge-based application of any size and
longevity also needs an auxiliary mechanism One implication of this recurring modu-

• to handle rapidly changing knowledge. The larity is that components management will be

202S

needed at all ikvels in a hybrid technology this work. This knowledge should be consol-
environment. ASLs will need to be main- idated and codified, through industry-wide

Stained, catalogued and reused just as we forums for discussion such as the STARS
currently propose for subroutines. Further Applications Area Workshop. Once some
down the pike, knowledge bases themselves consensus has been reached on the dependa-
might reside in libraries as well. bility of these criteria, the proposed STARS

Reusability Guidebook would be an excellent

Maturity of Domain Knowledge avenue for making these guidelines available
to the software industry as a whole.

The technology suitable to an applica-
tion domain depends closely on the relative *UNIX is a registered trademark of AT&T
maturity and stability of the domain, and the Bell Laboratories.
presence of a firm basis for standardization
and the consolidation of expertise. This is
borne out of examples such as the References
widespread use of application generators for
well-understood domains such as business (Batz83) Batz, J.C., Cohen, P.M., Redwine,
software, and the successful libraries of stan- S.T., Rice, J.R., "The Application-Specific
dard routines. This implies that efforts to Task Area", IEEE Computer, 16:11, pp. 78-
introduce software libraries or application 85, November 1983.
generators in highly unstable or innovation-
intensive software development environ- (CAMP) Anderson, C.M., McNicholl, D.G.,

- ments may constitute a premature introduc- "Contract FO 8635-84-C-0280, Common Ada
tion of reuse technology. It may result in Missile Parkages (CAMP):Preliminary
simple wasted effort or premature, hence Technical Report, Vol. 1", in STARS
ineffectual standardization. Instead, we advo- Workshop Proceedings, April 1985.
cate the incremental and evolutionary (Cheatham) Cheatham, T.E., "Reusability
approach of initially tackling narrowly through Program Transformations", IEEE
defined, highly constrained and well- Trans. on Software Engineering, Special Issue
understood sub-domains within such applica- on Software Reusability, SE-10:5, September
tion areas. In this phase, library support or 1984.
ASL support might be equally feasible (Freeman83) Freeman, M.W., Hirschman,
depending on the profile of the domain. Asdepenoedingo e rofil of a t domain A L., McKay, D.P., Miller, F.L., Sidhu, D.P.,our knowledge of an application domain "Logic Programming Applied to Knowledge-

matures, we will evolve naturally through a Based Systems, Modelling, and Simulation",

progression of technologies to support reuse, Basedigsth Moe en an ation",

beginning with ad-hoc reuse, continuing Proceedings of the Conference on Artificial

through development of standard libraries of Intelligence, Oakland University, April 1983,

routines for common functions, then pp. 177-193.

automating the composition of these func- (Freeman85) Freeman, M.W., "Case Study
tions through higher-level application genera- of the BEACON Project: The Burroughs
tors, to eventual knowledge-based support. Browser/Editor and Automated
This corresponds with the evolution in data- Configurator", IEEE Televido Symposium on
base technology, which may serve as the clas- Expert Systems in Prolog, Dec. 9, 1985.
sic example (to date) of a reuse-intensive (Horowitz) Horowitz, E., Munson, J.B., "An
software domain. Expansive View of Reusable Software", IEEE

Trans. on Software Engineering, Special Issue
Conclusion on Software Reusability, SE-IOLS, September~1984, pp. 477-487.

The taxonomy of reusability technolo-

gies and criteria for domain presented here (IEEE) IEEE Trans on Software Engineering,
are initial suggestions. Much work needs to Special Issue on Software Reusability, SE-

be done to make this framework into a 10:5, September 1984.

comprehensive methodology that can be of (Kastens) Kastens, U., "Ordered Attribute
general use within the indistry, though there Grammars", Acta Informatica, Vol. 13, 1980,
is already a large body of experience to guide pp. 229-256.

203
0

'9.

(Knuth) Knuth, D., "Semantics of Context- (Standish) Standish, T.A., "An Essay on
Free Languages", Math. Sy tems Theory, 5:1, Software Reuse", IEEE Trans. on Software

% 1971, pp. 127-145. Engineering, Special Issue on Software Reu-

(Mcllroy) Mcllroy, M.D., "Mass-produced sability, SE-10:5, September 1984, pp. 494-
Software Components", Software Engineering 497.
Concepts and Techniques, 1968 NATO Conf. (Teitelbaum8l) Teitelbaum, T., Reps, T.,
Software Eng., J.M. Buxton, P. Naur, and B. "The Cornell Program Synthesizer: ARandell, Eds. 1976, pp. 88-98. Syntax-Directed Programming Environment",

(SDC85) T. Payton et. al., Architectural CACM, 24:9, 1981, pp. 563-573.
Description of the SDC Common Software (Volkenburgh) Volkenburgh, G.V., "Infor-
Environment (SDC-CSE), Under contract to mation Package for Workshop on Reusable

* ., Naval Air Development Center, Warminster, Components of Application Software',
PA. (CDRL A002, Contract No. N62269-85- STARS Workshop Proceedings, April 1985.
C-0485) January, 1986.

.,

"9

204

CreatingReusable AdaO,J.

Software
Ed Berard

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)

:..

0-

e ' ' 1986 EVB Software Engineering, Inc.

205

Introduction

The primary objective of this set of notes is to make the audience aware of some of the
more important issues relating to the creation of reusable Ada software.Specifically, these
notes are designed to touch upon the "nuts and bolts" issues. Since the time allotted for
presentation is less than one day, the material is intentionally brief. It is assumed that the
audience has at least a reading knowledge of the Ada programming language, and has
developed at least one piece of serious software.

Some of the concepts contained in these notes were originally developed by Grady Booch
(Rational, Inc.), and will be amplified in his soon to be published book (Software
Components With Ada, Benjamin/Cummings). Specifically, the terminology associated
with reusable modules and the concept of subsystems were first described by Mr. Booch in
previous tutorials. While there is no formal working arrangement between Mr. Booch and
EVB Software Engineering, Inc., EVB recognizes and appreciates the pioneering work
done by Mr. Booch.

C©1986 E. B Software Engineering, Inc.

206
4

N If Hardware

People Thought
Like Software

People
• "There are some unused 'op

codes' in this CPU for this
specific application.. Why don't

o we remove the extra ones?"

* "There are 613 unused bytes of
RAM for this application. Let's
redesign the hardware so that
we can remove the extra
memory?"

"Using an 'off-the-shelf' CPU
is for wimps. Let's design our
own application-specific CPU
for this application. The same
goes for integrated circuits in
general."

©1986 EVS Software Engineering, Inc.

207
,'

Definitions
•¢ the extent to
which a module can be used in
multiple applications. (This
definition skirts the issue of
how much change, if any,

• might be required in the
-, module's code.)

* zzbH*y: The ease with

which software can be
transferred from one computer
system or environment to
another.

• : The ease with
which a piece of software may
be changed to suit a specific
application.

©1986 EVB Software Engineering, Inc.

208

t0R M M .900

Definitions
(Continued)

• ~~~ The ease
with which maintenance of a
functional unit can be
performed in accordance with
prescribed requirements.

* H N*5*y: The probability
that software will not cause the
failure of a system for a
specified time under specified
conditions.

* A&~i: A view of a
problem that extracts the
essential information relevant
to a particular purpose and

*ignores the remainder of the
information.

©1986 EVB Software Engineering, Inc.

209
r-

Definitions
(Continued)

* xdl A ooiiom: A
view of a problem that permits
the user to know precisely
about the input-output
specification while hiding the
underlying implementation of
the function itself. (This
permits reusability of the
function for varying data of a
fixed type.)

* Absim Azr o: A view of
a problem that hides both the
underlying structure of the
input-output data and the
underlying functionality of a
module.The user may
occasionally know some of the
details of the underlying
algorithms used in the module.

C1986 EVB Software Engineering, Inc.

210

Definitions
(Continued)

Similar to data abstraction, but
differs in having an
independent executing thread
of control that determines the
order in which operations
become available for execution
(includes concurrent
processes).

* Ugzbg*Wy: The ease with
which a piece of software may
be used for a specific
application.

C1986 EVS Software Engineering, Inc.

211
R L

ReusabolIity
~Axioms

• Reusability is not an absolute
(or discrete) concept.

• The Ada programming language
provides reusability concepts
which are fundamentally
different from those in most
other commonly used
programming languages.

* Reusability is increased when
software engineers achieve the
goals of software engineering
by adhering to the principles of
software engineering.

* *Management must encourage
the reuse of software, and
software engineers must both

*design and use reusable
software.

@1986 EVB Software Engineering, Inc.

212

0J I ' v' er i

ReusabilityAxioms
(Continued)

* Reusable software must be
promulgated within an
organization.

* Reusability must be defined,
measured, recorded, and
increased.

• Software engineers must avoid
language/implementation
tricks.

* Software engineers must know
what factors affect reusability.

• Software engineers must know
what factors affect portability.

• Reusability and portability are
enhanced when modules are
functionally cohesive and
loosely coupled, i.e., they are
highly independent.

©1986 EVB Software Engineering, Inc.

0- 213

Reusabil ity
Axioms
(Continued)

* Reusability and portability are
enhanced when modules have
well-defined interfaces.

• Software engineers must know
what is general and what is
specific to an application.

• Robust modules (created
through defensive
programming) are more
reusable than non-robust

*= modules.
• Practice conceptual integrity.
0 There are times when

reusability is not important.

@1986 EVB Software Engineering, Inc.

214

What Can Be
Reused?

• Code Fragments
• Modules (components)

* Subsystems (Rational/Booch
definition)

• Tools

• * Designs

©1986 EVB Software Engineering, Inc.

215
_0 Wr f

General Ada
Coding Style

Guidelines for
Ada Reusability
0 •Use meaningful identifiers.
0 Make frequent use of

attributes.
* Avoid literal constants.
* Use named parameter

association.
* Avoid the "use" clause.
• Use the "renames" only to

expose part of an abstraction.
* Use fully-qualified names
• Create adequate, concise, and

precise comments.

©1986 EVB Software Engineering, Inc.

216

Style Guidelines
(Continued)

* Fully exploit the separate
compilation features of the Ada
language.

* Make frequent use of subunits.

* Avoid default values for
descriminants, record field
values, and formal parameters.

? Avoid pragmas.

• Avoid
"unchecked deallocation."

* Avoid
"unchecked conversion."

* Avoid anonymous types.

* Avoid pre-defined and
implementation-defined types.

* Avoid optional language
features.

©1986 EVB Software Engineering, Inc.

217

Style Guidelines
(Continued)

* Avoid attention to underlying

implementations.

* Avoid restrictive modules.

0 Strive for limited private types.

* Make frequent and appropriate
use of packages.

• Make very frequent and
appropriate use of generics.

• Isolate, and clearly identify
environmentally-dependent
code.

• Watch out for assumptions
about garbage collection.

©1986 EVB Software Engineering, Inc.

218

,4

I

Reusable
Modules

,Let us consider the implemention of a
data structure in the Ada language.
For purposes of example, consider a
stack. A slac is a list to which we
may add or delete items from one end
only, i.e., it is a last-in-first-out data
structure. The question is: "how are
we to implement a stack in the Ada
language?"

-9

©1986 EVB Software Engineering, Inc.

219

Reusable
Modules

(Continued)

SPOFRAN Mindset:
Implement the stack as an array

* ~Faa/ciC Mindset: Implement
the stack as a linked list

* Foo Ae Mindset:
Implement the stack as a
package

" A Ad A Mindset:
Implement the stack as a
generic package

A Ad A Mindset:
Implement the stack as a family
of generic packages.

©1986 EVB Software Engineering, Inc.

220

Reusable
Modules

(Continued)

The experienced software engineer
recognizes that the time/space
behavior of a component is as
important as its functional behavior.
(This emphasis on functional
behavior is often the result of a
functional decompostion approach to
the design of software.) When we
speak of lm begzO, we are
concerned with the behavior of the
component in a concurrent
environment. When we speak of
fg zc we are concerned

"* with how a component utilizes
memory.

C1986 EVB Software Engineering, Inc.

221

Characteristics of
Highly-Reusable

Operations

0F • 91!v: The operation
cannot be implemented without
knowledge of the underlying
implementation of the object

• pc el: We have a minimal
set of primitive operations
which will allow us to
implement all necessary

* operations for the object

• ffcdm: We have added
,* additional operations to our

minimal set of operations to
enhance the usability of our

" abstraction.
©1986 EVB Software Engineering, Inc.

222

Classification of
Objects

* • L® : The object is not
composed of substructures,

" e.g., stacks and queues

** The object may be
viewed as being composed of
identical substructures, i.e.,the object is recursively
defined, e.g., lists and trees

It

V 1986 EVB Software Engineering, Inc.

Sa". 223

e.--

Classification of
Operations

• ecop: Returns information
about an object, but cannot
change the state of the object

* ,: Changes the
state of an object, often does
not return information about
the object

l• Ei Tz: For objects which
have a structure, allows us to
visit each node of the structure
and to perform some operation

* at each node. This operation is
* _characteristically a selector

operation.

©1986 EVB Software Engineering, Inc.

224

Taxonomy ofPrimitive
Reusable
Modules

• Bounded/Unbounded

*• Iterator/Non-Iterator

* Managed/Unmanaged

• Concurrent/Sequential/Guarded/
Controlled/Multiple

• Priority/Non -Priority

* Balking/Non-Balking

* Limited/Non-Limited

. 1986 EVB Software Engineering, Inc.

225

0ii 11115 1

Bounded Vs.
Unbounded

• ~Bded: There is a specified
upper limit to the number of
nodes in the data structure,
which is specified at
declaration time. (Note: The
underlying implementation is
accomplished via sequential
allocation, and the use of any
dynamic variables is strongly
discouraged.)

* xUbomed,: The data
structure is free to grow or
shrink based on available
computer resources. These are
implemented using linked
allocation.

C1986 EVB Software Engineering, Inc.

226

Iterator Vs. Non-
Iterator

Hzflego: The component
provides an iterator operation,

* i.e., a means of visiting all the
nodes in the underlying
abstraction and performing

*some action at each node.

NoH =r : The component
does not provide an iterator
capability

01986 EVB Software Engineering, Inc.

227

Managed Vs.
Unmanaged

• xaged: The component
* provides its own memory

management, e.g., it maintains
a "free list" of available nodes
rather than depending on
features such as
unchecked deallocation

* mzzzged: the component
provides no memory
management capabilities, i.e.,
it depends on those provided
by the environment

C1986 EVB Software Engineering, Inc.

228

Sequential,
Concurrent,

Guarded,
Controlled,

Multiple
*S eqwe& : The component

will behave as expected in a
non-concurrent environment.
In a concurrent environment,
the component may. be subject
to data and process pollution.

•Comcwrnz: The component
will behave in a reasonable
manner in a concurrent
environment, i.e., the
component is constructed so as

*to avoid data and process
pollution. No user action is
required

'1986 EVB Software Engineering, Inc.

0229

Sequential,
Concurrent,

Guarded,
Controlled,

Multiple
• (Continued)

9zd: The component
provides the user with the
capability of using the
component in a concurrent
environment, i.e., a semaphore
mechanism to "lock" and
"unlock" objects. While this is
very dangerous (as opposed to
concurrent components) the
user has the ability to easily
construct higher-level
operations from the "atomic"
operations provided in the
guarded component.

C©1986 EVB Software Engineering, Inc.

230
0,t~m x

Sequent ial,
Concurrent,

Guarded,
Controlled,

Multiple
* (Continued)

* 7goe: The user of the
component will prevent the
object from being
simultaneously accessed by
two or more processes. The
component, in turn, will
protect any state information
(e.g., a free list) contained
within the component. Note
that concurrent components
may be built on top of
controlled components.

0 1986 EVB Software Engineering, Inc.

231

' 111 ili

Sequential,
Concurrent,

Guarded,
Control.led,

Multiple
(Continued)

• wl* : The component
provides for multiple reads
(selector operations) of an
object while sequentializing
writes (constructor operations)
to the object. This allows for a
high degree of concurrent
access to an object while
preventing corruption of the

, object or state information
associated with the object.

0 1986 EVB Software Engineering, Inc.

232*

Priority Vs. Non-
Priority

0 r1ray: The nodes in the
data structure are ordered
based on a priority scheme,
e.g., a priority queue. (Note:
In a priority structure,
operations on the nodes are
dependent on both those
normally associated with the
abstraction, and on the priority
of the items placed in the
structure.)

: The items in
the data structure are not

" treated on any priority basis.

10' ©1986 EVB Software Engineering, Inc.

233
..

Balking Vs. Non-
Balking

*Sz 1-5 *L: Items may be
removed from a data structure
in a manner other than that
normally associated with the
abstraction, e.g., in a balking
queue, items may be removed
without first bringing them to
the front of the queue.
H*° Bz;klx. The component

provides no other operations
for the removal of items from a
data structure other than those
normally associated with the

0 abstraction

©1986 EVB Software Engineering, Inc.

234
0Q

Limited Vs. Non-
Limited

*Ld• mgle: The abstraction is a
very large data structure with
specific bounds, however, the
underlying implementation is
accomplished via linked
allocation, e.g., sparse
matrices

•Hv =L: The underlying
implementation is consistent
with the abstraction, i.e.,

*bounded components are
implemented using sequential
allocation and unbounded
components are implemented
using linked allocation.

©1986 EVB Software Engineering, Inc.

235

Concurrency
Issues

0 •Data and process pollution

Indeterminacy

• Deadlocking
* Friendly vs. unfriendly tasking

implementations

• Degree of concurrency

• Guarded vs. Concurrent
components

©1986 EVB Software Engineering, Inc.

236

Z

. .. rw w m w nip. .= :. n n I , 11 1T= Ir, ., s' .>-,. - ; , 2 ' .J . I :' -. -' i - , - . .-, -'r. -* -- : , - ', :;

Garbage
Collection Issues

• Use or non-use of access types

• Allocation of heap storage,
e.g.:

for Item' Storage Size use
5*KiloBytes ;

Use of
"'unchecked deallocation"

Time to allocate and deallocate
heap storage

©1986 EVB Software Engineering, Inc.

2), 237

Compiler Issues

• Avoidance of compiler
dependent features

'a Considering compiler
optimization features

* Avoidance of "tuning" the Ada
code to any specific compiler
(or hardware)

©1986 EVB Software Engineering, Inc.

238

Eno

Exceptions In
Reusable

Components

, •Use of exceptions to report
exceptional conditions

* Designing and exporting well-
named exceptions

• Noting the use of exceptions in
the comments for program
units

* Handling exceptions in Ada
tasks

©1986 EVB Software Engineering, Inc.

239
I

Efficiency Issues

" Inverse relationship between
efficiency and reliability

• Efficiency vs. reusability

• Efficiency vs. portability

Use of pre-existing, proven
algorithms

* How much efficiency should
you strive for

SExporting objects vs. exporting
a:. types (this is also a strong

usability issue)

©1986 EVB Software Engineering, Inc.

240

IoJl

Subsystems

S5wlbaagemp are collections of
packages (mostly generic packages)
which behave logically like packages,
i.e.0

* The collection is treated as a
unit (even though the syntax
and semantics of the Ada
language may not necessarily
be used to enforce this)

* Objects and types, as well as
operations may be exported

* Some of the operations,
*objects, and types are visible

while others are hidden

@1986 EVB Software Engineering, Inc.

*• 241

Subsystems
(Continued)

* The hardware analog of a
subsystem is a populated
printed circuit (pc) board

• Subsystems are of a higher
level of abstraction than
packages

* Like populated pc boards,
subsystems are not stand-alone
applications, but are used to
construct applications

* Examples of subsystems
include menu subsystems and
windowing subsystems

• Subsystems are less common
than reusable modules and tend
to be more vertical than
horizontal in their application
areas

@1986 EVB Software Engineering, Inc.

242
0

Tools

--]o are stand-alone applications.
The usual connotation is that they are
used by software engineers to
automate various parts of the

* software life-cycle. Booch classifies
tools as:

• Utilities

• Filters (Kernighan and
Plauger)

• Sorting

• Searching

©1986 EVB Software Engineering, Inc.

243

Tools
(Continued)

Often tools are considered within the
context of a software engineering
environment. This implies that their

* reusability will be strongly connected
to their ability to interact lintegrate
with the environment, and their
ability to interact/integrate with other
tools. In the Ada world, this requires
some additional concepts:

* DIANA

• Discrete tools (e.g., tools in a
UNIX IM or VMS environment)

• Diffuse tools (e.g., tools in the
Rational Environment)

@1986 EVB Software Engineering, Inc.

244

. ...0

Tools
(Continued)

Tools may be either stand-alone or
invokable from within an application.
For example, a tool which analyzes
the complexity of Ada source code
might be parameterized so that it may
be called from within an application
and pass the complexity information
to the calling unit as an abstraction.
Note that this increases the
reusability of the tool.

@1986 EVB Software Engineering, Inc.

245

Tools
(Continued)

To increase the reusability and
portability of a tool, the software
engineer should:

• Isolate and clearly identify any
implementation-dependent
modules

• Use packages instead of files
for I/0.

• Follow the previously
mentioned Ada coding style
guidelines

. Not attempt to tailor the tool
for any specific Ada

* implementation

C1986 EVB Software Engineering, Inc.

246

4I

Reusable Designs

•0 With all due respect to Ada as a
DL, we will define a software
design as any non-code

*software, e.g., documentation.
0 A previously-existing design

for a non-Ada implementation
could be reused to implement
the application in the Ada
language.

0 With a well-engineered design
(most likely no produced via a
functional decomposition
approach), parts of the design
might be incorporated into
(reused) another Ada
application.

4

©1986 EVB Software Engineering, Inc.

247
i,12

Designing With
Reusability In

Mind

" Two basic problems: produce
reusable software as a by-

*product of the design effort,
and to make use of previously
existing reusable software.

• Some software development
methodologies are more prone
than others to produce reusable
software.

* Reusable software can be used
in both a top-down and a
bottom-up design effort.

0 Rapid prototyping is possible
with carefully constructed
reusable components.

©1986 EVB Software Engineering, Inc.

248

Designing With

Reusability In
Mind

(Continued)

One of the largest impediments to the
creation and use of reusable software
is the creation of a hardware
architecture first, and then requiring
that the software be designed around
the hardware. A far better approach is

Saof" fz fd:s, i.e., the software is
designed first, and then the hardware
is designed and built to support the
software.

©1986 EVB Software Engineering, Inc.

0 249

Major Obstacles
to Reusable

Software
•NIH

"Only wimps use someone
else's software."

Contracting procedures which
encourage "re-invention of the
wheel," large staffing, and low
quality software

" Lack of confidence in the
quality of potentially reusable
software, i.e., lack of a formal
certification mechanism

* Lack of technical expertise
• Unawareness of technology, or

reusable components

o. Lack of useful tools

©1986 EVB Software Engineering, Inc.

250

An Example of Ada Code
1 Defining the Problem

1.1 Stating the Problem
Create a generic bounded stack package.

1.2 Analysis and Clarifications of the Givens
1. The following is a definition of a linear list : "A linear list is a set of n > = 0

nodes X[1], X[2], ..., X[n] whose structural properties essentially involve only the
linear (one-dimensional) relative positions of the nodes: the facts that, if n > = 0,
X[1] is the first node; when 1 < k < n, the k th node X[k] is preceded by X[k - 1
and followed by X[k + 1]; and X[n] is the last node." (See [Knuth, 19731.)

2. A stack is defined to be "a linear list for which all insertions and deletions (and
usually all accesses) are made at one end of the List" ([Knuth, 1973]). This end is
usually called the top of the stack. Notice that the above definition implicitly states

* the Last-In-First-Out (LIFO) property of a stack.

3. By bounded, we mean that the maximum length of a given stack does not change.
Thus, a user of this generic must specify the desired length of a stack when the
stack object is declared.

i~ r4. The stack abstraction must be sufficient, complete, and primitive. Sufficient
means that a sufficient variety of operations are provided to allow the user of the
abstraction to implement what is needed. Complete means that all aspects of the
abstract behaviour of the abstraction are captured. Primitive means that only those
operations that could not be implemented effectively without access to the
underlying implementation are provided.

5. The following operations (meeting the tradeoffs of the criteria defined above) are
defined inside the stack package: push down an element onto a stack, pop up an
element off a stack, check whether a stack is empty or full, find out how many
elements are currently in a given stack, find out the top element in the stack, peek at

* the n th element below the top (where 1 <= n <= current number of elements in
the stack), clear a given stack (i.e., create an empty stack), test two stacks for
equality, and copy one stack to another.

6. If a given stack is empty and the user tries to pop an element off the stack, an
exception (Underflow) will be raised.

7. Overflow will be raised if a user tries to push an element onto a full stack.

8. Element Not Found will be raised if a user tries to peek at a non-existent
element ortries to find out the top element in an empty stack.

9. We are not concerned with what types of elements are put on the stack. As many
kinds of elements as possible should be allowed.

©1986 EVB Software Engineering, Inc.

* 1251

2 Developing an Informal Strategy
A user will be able to push an element onto a stack, pop an element off a stack, find out
whether a stack is empty, find out whether a stack is ful, determine the number of
elements in a stack, find out the top element in a stack, peek at an element in a stack, and
clear a stack. The user will also be provided with a means to test two stacks for equality
and a means of copying the contents of one stack to another.

@C1986 EVB Software Engineering, Inc.

252

0

"-w #N ..

3 Formalizing the Strategy
3.1 Identifying the Objects of Interest
3.1.1 Identifying Objects and Types
A u=z will be able to push an element onto a staLL pop an element off a Ita&~, find
out whether a ga& is empty, find out whether a ga&i is full, determine the number of
elements in a stack find out the to lmn in a stack peek at an el~mrent in a

aL and clear a Sa~k.Te U= will also be provided with ameans to test two stac~ks
for equality and a means of copying the contents of one giauk to another.

Objects Space Identif ler

user Problem

eeet Solution Elemt

stack Solution Stack

top element Solution (=Elemnent)

@1986 EVB Software Engineering, Inc.

253

3.1.2 Associating Attributes with the Objects and
Types of Interest

Element

- is an abstract type

- can be copied

- can be tested to see if it is equal to another element

Stack

- defines an abstract type

- its fixed maximum length does not change

- can be empty

- can be full

- can contain up to some user-defined maximum number of items

- elements in a stack are pushed on to the top of the stack, or popped from the top
of the stack, but all insertions and deletions are from that end only.

- The Last element In is the First element Out (LIFO)

@1986 EVB Software Engineering, Inc.

254

3.2 Identifying the Operations of Interest
3.2.1 Identifying Operations
A user wil he able to push an element onto a stack pop an element off a stack, fld
out whether a stack~ is empty, flind out whether a stack is full, deemn~h
number of elements in a stack, ind out the tpelement in a stack, Veek at an eleetna
itaLk. and cIUlera tac]L The user will also be provided with a means tots w
stacks for equality and a means of copling the contents of one stack to another.

Operations Space Objects Identifier

will be able Problem

puha lmn noastc ouin SakPs
puoh an element ont a stack Solution Stack Push

fin po t an ehen of. as stac Solution Stack Po-Ept

find out whether ... is empty Solution Stack Is Empty

determin number of elemiients solution Stack Number Of Elements

find out the top element in a stack Solution Stack Top Of

peek at an element in a stck Solution Stack Peek

clear a stack Solution Stack Clear

will also be provided Problem

to test two stacks for equality Solution Stack '90

copying the contents of one stack to another Solution Stack Copy

©1986 EVB Software Engineering, Inc.

255

3.2.2 Associating Attributes with the Operations
of Interest

Push

- Is a constructor

- puts a given element onto the top of a given stack

- raises an exception (Overflow) if a user tries to push an element onto a full
stack

Pop

- Is a constructor

- pops the top element off a given stack

- raises an exception (Underfiow) if a user tries to pop an element off an
empty stack

* Is_ Empty

- 1s aselector

- has atrue value if the given stack is empty; false otherwise

- Isa selector

- has atrue value if the given stack is full; false otherwise

NumberOfElements

- Is aselector

- is the current number of elements in a given stack

* Top Of

- Is aselector

- allows a user to look at the content of the top of a given stack, i.e., the top
element in a given stack

- raises an exception (ElementNotjFound) if the stack is empty

Peek

- 1s aselector

@1986 EVB Software Engineering, Inc.

256

,0211

- allows a user to look at the nth element in a given stack (including the top)

- raises an exception (Element Not Found) if a user tries to peek at a
non-existent element (e.g., there are currently 5 elements in a stack and a
user tries to peek at the 8th element)

Clear

- Is a constructor

- initialize stack to empty stack

- Is a selector

- returns true if two stacks are equal

- two stacks are equal if the following conditions are all true:

1. the current number of elements in both stacks are equal, and

2. the values of the corresponding elements in both stacks are equal

Copy

-- Is a constructor

- copy one entire stack to another

- will raise an exception (Overflow) if the destination stack has an upper
bound that is smaller than the number of elements in the source stack

0

c1986 EVO Software Engineering, Inc.

257

0i .O

3.2.3 Grouping Operations, Objects, and Types
Stack

Push

POP

IsEmpt

IS-Funl

Number-Of Eements

TOP-Of

Peek

0 Clear

Copy

Eements

4cnone* (is part of the interface data to the other program units. See [EVB,
1985] page 3-38 # 3.)

@1986 EVB Software Engineering, Inc.

258

0'll''~l11011 6 VC ll

3.3 Defining the Interfaces
3.3.1 Formal Description of the Visible Interfaces
The generic package Bounded-Stack contains:

the generic formal pamameter Element,

the type Stack,

and the following operanons:

Push
POP
is Empty
lifuU
Number Of Elements

peek
clear
COP,

and the following =xeptions:

Underfiow
Overflow
ElementNotFound

© 1986 EVB Software Engineering, Inc.

259

3.3.2 Analysis and Clarifications of High-Level
Design Decisions

1. The generic formal type parameter Element will be of type private to satisfy the
criteria set down in the Analysis and Clarifications fo the Givens (1.2) number 9
and the fact that assignment of Elements will be needed in order to put things onto
the stack.

1~

C1986 EVB Software Engineering, Inc.

260

3.3.3 Graphic Annotation of the Visible Interfaces
Bounded Stack---------------------------------------

* a

*----------S

SStackN

*Underfiow

* Element-Not-Found

.............................
\ ..

a I

S a-------------------------a a

S Number Of Elements

a °

a a

° 2

0 a

."a a

a- Pek
•a a0

a aII i i~ii m i iI i i I i~ I

* a18 aV otaeEgiernIc

* a a a.-

3.4 Implementing the Solution

3.4.1 Implementing the Operation Interfaces
generic

type Element is private
- Element is the type of object that will be put on the stack

package BoundedStack is

-- This generic bounded stack package provides stack manipulation
-- operations neccessary for most applications where stack data
-- structure is needed. In building this package, we were striving
-- for the following: operations provided in this package must
-- be primitive and complete and sufficient.

-- A primitive operation is an operation which can NOT be
-- implemented effectively WITHOUT knowing the underlying

• - representation of a particular object (in this case our
-- object is STACK). By complete we mean that a user will find
-- that the following operations will be the ONLY operations
-- needed to manipulate a bounded stack in almost any application.
-- Whenever neccessary, a user will be able to build other
-- operations based only on the operations provided in this package.

-- Written by Johan Margono, reviewed by (in alphabetical order):
-- B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

-- J. Margono 1.0 9 Jul 1985
-- J. Margono 2.0 19 Mar 1986 "type Stack (Length ... is
-- changed to "type Stack
-- (MaximumLength : ..." to be

-- consistent with our naming
-- convention

• -- (c) 1986 EVB Software Engineering, Inc.

type Stack (Maximum-Length : Positive) is limited private

procedure Push (ThisElement : in Element ;
* IntoThis Stack : in out Stack)

push This Element onto the top of Into This Stack;
-- exception Overflow will be raised if Into This Stack is full

©1986 EVB Software Engineering, Inc.

262

procedure Pop (TopElement out Element
OffThisStack in out Stack) ;

-- pop TopElement off Off_This_Stack;
-- exception Underflow will be raised if Off_ThisStack is empty

function Is_Empty (ThisStack : in Stack) return Boolean

-- returns true if ThisStack is Eepty; false otherwise

function IsFull (This Stack : in Stack) return Boolean

-- returns true if ThisStack is full; false otherwise

function NumberOfElements (InThisStack : in Stack) return Natural

-- returns the current number of elements in InThisStack;
-- eero is returned if InThisStack is empty

function TopOf (This Stack : in Stack) return Element

-- returns the top element in This Stack;
-- exception ElementNotFound is raised if This Stack is empty

f function Peek (AtElement : in Natural ;

In ThisStack : in Stack) return Element

-- returns the nth element in In This Stack 1 <- n <- length
-- (n is equal to At Element). If At Element is greater than the
-- current number of elements in InThis_Stack, the exception
-- Element Not Found will be raised (note : ElementNotFound will
-- also be raised if InThisStack is empty)

procedure Clear (ThisStack : in out Stack)
'.--

-- makes ThisStack an empty stack

function "-" (Left in Stack ; Right in Stack) return Boolean

-- returns true if
--- 1. number of elements in Left is equal to number of elements

* -- in Right, AND
-- 2. values of elements in Left is equal to values of elements
-- in Right (i.e., in corresponding slots);
-- false otherwise

--

©1986 EVB Software Engineering, Inc.

263

proceduze Copy (This_Stack In Stack ;
Into out Stack) ;

-- copy the contents of one stack into another stack (Into);
-- will raise Overflow if the destination stack (Tnto) has
-- length that is smaller than the number of elements in the
-- source stack (ThisStack)

Underflow exception

-- raised if a user tries to pop an element off an empty stack

Overflow exception ;

S-- raised if a user tries to push an element onto a full stack
--

ElementNotFound exception

-- raised if a user tries to find the top of an empty stack
-- or Peek at an empty stack or peek at non-existent element

" ©1986 EVB Software Engineering, Inc.
S264

-Pi -

private

Empty_StackIndex :constant :-0

type Contents_-OfSt ack is array (Positive range <>) of Element;

type Stack (Maximum -Length P ositive) is record
Top :Natural :- EmptyStackIndex;
Contents ContentsOfStack (1 .7 Maximum-Length)

and record ;
-Stack is initially Empty (i.e., Top -EmptyStackIndex)

end BoundedStack;

'V.

C198 EV3Sfwr niernIc

~r265

'UVw Mk TMI r'V V M Im W- .~ ' -a pn' .- ,' 1- -

3.4.2 Stepwise Refinement of the Highest-Level
Program Unit

package body Bounded Stack is

- This generic bounded stack package provides stack manipulation
- operations neccessary for most applications where stack data
- structure is needed. In building this package, we were striving
-- for the following: operations provided in this package must
-- be primitive and complete and sufficient.

- A primitive operation is an operation which can NOT be
-- implemented effectively WITHOUT knowing the underlying
-- representation of a particular object (in this case our
-- object is STACK). By complete we mean that a user will find
-- that the following operations will be the ONLY operations
- needed to manipulate a bounded stack in almost any application.
-- Whenever neccessary, a user will be able to build other
-- operations based only on the operations provided in this package.

Written by Johan Margono, reviewed by (in alphabetical order):
0 -- B.D. Balfour, E.V. Berard, G.E. Russell

V -- Author Revision Date Reason

- . Margono 1.0 8 Jul 1985

-- (c) 1986 EVB Software Engineering, Inc.

procedure Push (ThisElement : in Element
IntoThis_Stack : in out Stack) is separate ;

-- push This Element onto the top of Into This Stack;
-- exception Overflow will be raised if IntoThis Stack is full

a.- procedure Pop (Top_Element . out Element ;
Off This Stack : in out Stack) is separate

-- pop TopElement off Off This Stack;
-- exception Underflow will be raised if Off This Stack is empty

function Is Empty (This_Stack : in Stack) return Boolean is separate

-- returns true if Th. sStack is empty; false otherwise

function IsFull (This-Stack : in Stack) return Boolean is separate

returns true if This Stack is full; false otherwise

©1986 EVB Software Engineering, Inc.

266

function NumberOf Elements (In This Stack in Stack)
return Natural is separate ;

-- returns the current number of elements in In This_Stack;
-- zero is returned if InThis Stack is empty

function TopOf (ThisStack : in Stack) return Element is separate

- returns the top element in This Stack;
-- exception ElementNot-_Found is raised if ThisStack is empty

function Peek (At-Element in Natural ;
InThisStack in Stack) return Element is separate;

-- returns the nth element below the top element in In This Stack
-- (n is equal to AtElement). If AtElement is greater than the
-- current number of elements in In_ThisStack minus one, exception
-- ElementNotFound will be raised (note : ElementNotFound will
-- also be raised if In-ThisStack is empty)

procedure Clear (This_Stack in out Stack) is separate

-set ThisStack to be the same as an empty stack

©1986 EVB Software Engineering, Inc.

267

Ma

function "-" (Left in Stack ; Right : in Stack) return Boolean is

-- returns true if
-- 1. number of elements in Left is equal to number of elements
-- in Right, AND
-- 2. values of elements in Left is equal to values of elements

-- in Right (i.e., in corresponding slots);
-- false otherwise

-- NOTE: This function is included in the body of the package (as
-- opposed to being implemented as a subunit) because,
-- according to section 10.1, paragraph 3 of the Ada

-- Language Reference Manual, "The designator of a
-- separately compiled subprogram (whether a library unit
-- or a subunit) must be an identifier."

-- Written by Johan Margono, reviewed by (in alphabetical order):
B--B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985
-- B. Balfour 2.0 20 Feb 1986 removed restriction that

stacks must have same
length (bounds)

-- (c) 1986 EVB Software Engineering, Inc.

begin -

retuzn Left.Contents(I .. Left.Top) - Right.Contents(I .. Right.Top)

end -

S©1986 EVB Software Engineering, Inc.

268

procedure Copy (This_Stack : in Stack
Into out Stack) is separate;

copy the contents of This Stack into another stack (Into);
-- will raise Overflow if the destination stack (Into) has
-- length that is smaller than the number of elements in the
-- source stack (This_Stack)

end BoundedStack

C©1986 EVB Software Engineering, Inc.

269
&K

separate (Bounded Stack)
procedure Push (This Element : in Element

Into This_Stack in out Stack) is

-- push This Element onto the top of IntoThis Stack;
- exception Overflow will be raised if IntoThisStack is full

-- Written by Johan Margono, reviewed by (in alphabetical order):

-- B.D. Balfour, E.V. Berard, G.E. Russell

- Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985

-- (c) 1986 EVB Software Engineering, Inc.

-- - n u m n m nn--u um m u

begin -- Push

* if IntoThisStack.Top - Into ThisStack.MaximumLength then

raise Overflow ;

else

IntoThisStack.Top :- Into This_Stack.Top + 1 :
IntoThisStack.Contents(IntoThisStack.Top) :- This Element

end if

end Push

0

©1986 EVB Software Engineering, Inc.

270
0

separate (BoundedStack)
procedure Pop (TopElement out Element ;

Off_ThisStack in out Stack) is

- pop TopElement off Off This Stack;
.. exception Underflow will be raised if Off_ThisStack is empty

-- Written by Johan Margono, reviewed by (in alphabetical order):
- ..D. Balfour, E.V. Berard, G.E. Russell

- Author Revision Date Reason

- J. Margono 1.0 8 Jul 1985

- (c) 1986 EVB Software Engineering, Inc.

begin -- Pop

if Off_This_Stack.Top - EmptyStack-Index thcn

raise Underflow ;

else

4 TopElement :- Top Of (This Stack -> Off ThisStack)
NOffThisStack.Top :- Off_ThisStack.Top - 1 ;

end if

end Pop ;

0

4. © 1986 EVB Software Engineering, Inc.

271

separate (BoundedStack)
function Is_Empty (ThisStack :In Stack) return Boolean is

- returns true if ThisStack is empty; false otherwise

- Written by Johan Margono, reviewed by (in alphabetical order):
-- .D. Balfour, E.V. Berard, G.E. Russell

-Author Revision Date Reason

-J. !dargono 1.0 8 Jul 1985

(- c) 1986 EVE Software Engineering, Inc.

begin -- Is Empty

return This Stack.Top -EmptyStackIndex;

* end IsEmpty;

:1

d-.

c1986 EVB Software Engineering, Inc.

272

0IIII II I r

.11 V II~~~t4pjII11

0

separate (Bounded-Stack)
function Is_Full (ThisStack : in Stack) return Boolean is

-- returns true if ThisStack is full; false otherwise

-- Written by Johan Margono, reviewed by (in alphabetical order):
- B.D. Balfour, E.V. Berard, G.E. Russell

- Author Revision Date Reason

j. Margono 1.0 8 Jul 1985

-- (c) 1986 EVB Software Engineering, Inc.

begin -- Is_Full

-- check if top of stack is equal to length of stack
return This_Stack.Top - This_Stack.Maximum Length ;

end Is_Full ;

I

S

C©1986 EVB Software Engineering, Inc.

273

sepazate (Bounded Stack)
function Number_Of_Elements (In ThisStack : in Stack) return Natural is

- returns the current number of elements in In ThisStack;
-- zero is returned if InThis Stack is empty

-- Written by Johan Margono, reviewed by (in alphabetical order):
-- B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

- . Margono 1.0 8 Jul 1985

-- (c) 1986 EVB Software Engineering, Inc.

begin -- NumberOfElements

return InThisStack.Top ;

end NumberOfElements

©1986 EVB Software Engineering, Inc.

274
0&mo

0

separate (Bounded Stack)
function Top_Of (ThisStack : in Stack) return Element is

- returns the top element in This Stack:
-- exception ElementNotFound is raised if ThisStack is empty

- Written by Johan Margono, reviewed by (in alphabetical order):
- B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985
-- J. Margono 2.0 19 Mar 1985 Constraint Error will not

be raised if pragma SUPPRESS
is used

-- (c) 1986 EVB Software Engineering, Inc.

begin - Top Of

if This_Stack.Top - EmptyStackIndex then

raise ElementNotFound ;

else

return ThisStack.Contents(ThisStack.Tp) ;

end if

end Top_Of

©1986 EVO Software Engineering, Inc.

2750

separate (BoundedStack)
function Peek (At Element in Natural ;

In ThisStack in Stack) return Element is

-- returns the nth element below the top element in InThisStack
-- (n is equal to AtElement). If At Element is greater than the
-- current number of elements in InT his_Stack, exception
-- ElementNotF.ound will be raised (note : ElementNotFound will
-- also be raised if InThisStack is empty)

Written by Johan Margono, reviewed by (in alphabetical order):

-- B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

, -- J. Margono 1.0 8 Jul 1985
,- -- J. Margono 2.0 19 Mar 1985 Constraint Error will not

be raised if pragma SUPPRESS
is used

-- (c) 1986 EVB Software Engineering, Inc.

begin -- Peek

if AtElement > InThisStack.Top then

raise ElementNotFound ;

else

return InThisStack.Contents(In_This_Stack.Top - At-Element + 1)

end if;

end Peek ;
-p ..

4%-.

,'.?:. 1986 EVP Software Engineering, Inc.

';.."..276

separate (Bounded Stack)
procedure Clear ('his_Stack in out Stack) is

-- set This Stack to be an empty stack
-- this is The same as if all elements had been popped off.

-- Written by Johan Margono, reviewed by (in alphabetical order):
-- B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985

-- (c) 1986 EVB Software Engineering, Inc.

begin -- Clear

-- re-assign stack top
ThisStack.Top :- EmptyStackIndex ;

end Clear

* ©1986 EVB Software Engineering, Inc.

* 277

-Z

9

separate (Bounded Stack)
procedure Copy (ThisStack in Stack

Into out Stack) is

-- copy the contents of This Stack into Into;
-- will raise Overflow if the destination stack (Into) has
-- length that is smaller than the number of elements in the
-- source stack (ThisStack)

- Written by Johan Margono, reviewed by (in alphabetical order):
-- B.D. Balfour, E.V. Berard, G.E. Russell

-- Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985

(-- c) 1986 EVB Software Engineering, Inc.

begin -- Copy

if ThisStack.Top > Into.MaximumLength then

raise Overflow;

else -- there is enough room to put the contents of
-- ThisStack into Into

Into.Top :- This_Stack.Top;

Into.Contents(l .. ThisStack.Top) :
This_Stack.Contents(1 .. ThisStack.Top);

end if;

end Copy ;

0

© 1986 EVB Software Englineering, Inc.

278

00

3.4.3 Stepwise Refinement of the Other Program
Units

None equired.

C1986 EVB Software Engineering, Inc.

279

0M

3.4.4 Recursive Application of OOD
None required.

©~~1986 EVB Software Engineering, Inc".ij

2

Test Programs
with Text_10;
with BoundedStack ;
procedure BoundedStackFirst_Test is

- This procedure is a driver to test the bounded stack package.

-- It allows all operations to be invoked in any order.

-- Written by J. Margono, and reviewed by B. D. Balfour, E. V. Berard,
- and G. E. Russell.

-- Author Revision Date Reason

-- J. Margono 1.0 8 Jul 1985
-- J. Margono 2.0 20 Feb 1986 to make it uniform with

all other first tests

-- (c) 1986 EVB Software Engineering, Inc.

* type Command is
Clear, -- a stack
Copy, -- a stack to another stack
Empty, -- is a stack empty?
Equal, -- are two stacks equal?
Elements, -- in a stack
Peek, -- at an element in a stack
Pop, - an element off a stack
Push, -- an element into a stack
Top, -- top element of a stack
View, -- a stack

-- command on the test program
Quit -- quit the test

package Conunand_IO is new Text_10. Enumeration10 (Enum -> Command);

package Integer 10 is new Text IO.Integer_1O(Num -> Integer) ;
package Bounded is new Bounded_Stack(Element -> Integer)

-- Integer is chosen simply to represent an enumeration data type

function w-" (Left : in Bounded.Stack ;
Right : in Bounded.Stack) return Boolean

renams Bounded."-" ; -- makes "-" directly visible

type AccessTo Stacks is access Bounded.Stack ;
type ArrayOf_Stacks is array (Positive range <>) of AccessToStacks

NumberOfStacks : Positive ;

. procedure Display (This Stack : in Bounded. Stack) is separate ;
01986 EVB Software Engineering, Inc.

281

-displays the contents of a given stack

begin -- BoundedStackFirstTest

GetNumberOfStacks:

loop

begin

TextIO.Put("Hov many STACK(s) do you need? "

Integer IO.Get (Item -> NumberOfStacks) ;
suit GetNumberOfStacks ; Awen there is no error

except ion
when TextIO.Data Error ->

TextIOF.Skip__Line ;

Text7IO.Put -Line("Enter a POSITIVE number only!!") ;

when ConstraintError ->
TextIO.Put Line("Enter a POSITIVE number only!!!") ;

when others -

TextIO.PutLine("Unknovn exception raised. Re-enter.")

and;

.44' end loop Get NumberOfStacks;

* declare

Stacks :Array OfStack3(1 . NumberOfStacks)

subtype StackRange is Natural range 1 .. NumberOfStacks;
Stack - ndex : Stack "Range :- 1;
Stack-size : Positive ;

UserComand :Coummand ;
UserElement :Integer ;
Stack Number :Positive ;
SecondStackNumber : Positive ; -- used in Copy and -

Element_ Index : Positive ; -- used in Peek

* begin

Get StackSizes:
loop

begin

Text IO.Put (Enter size for stack V")
IntegerIO.Put(Item ->StackIndex, Width ->0);
TextIO.Put(*:)
IntegerIO.Get (Item ->StackSize)

-- declare the actual stack
Stacks (StackIndex) :-

c1986 EVB Software Engineering, Inc.

282

new Bounded.Stack (MaximumLength -> StackSize)

ezit GetStackSizes when StackIndex - NumberOfStacks ;

StackIndex :- StackIndex + 1

exception
when Text IO.Data Error ->

Text I0. Skip_Line ;
TextIO.Put Line("Enter a POSITIVE number only!!!") ;

when ConstraintError ->
Text_IO.Put_Line("Enter a POSITIVE number only!!!") ;

when others s>
TextIO.PutLine("Unknown exception raised. Re-enter.")

end;

end loop Get_StackSizes ;

TestStack
loop

• begin

Text IO.Put Line("Selections :")
Text IO.Put Line(" STACK") ;
Text _IO.Put Line(" Clear, Copy, Empty, Equal,")
Text IO.Put Line(" Elements, Peek, Pop, Push,")
Text-IO.Put Line(w Top, View")
TextIO. PutLine (" TESTPROGRAM")
Text IO.Put Line(" Quit")
Text-_IO.Put ("Enter selection : w)

CommandIO.Get (Item -> UserCoxand) ;

ezit TestStack when UserCommand - Quit ;

came UserConuuand L

when Push ->
Text IO.Put("element ") ;
Inte er_IO.Get (Item -> User Element)
Text _IO.Put("stack (1-") ;
IntegerIO.Put(Item -> NumberOfStacks, Width -> 0)
Text IO.Put(") : ")
IntegerIO.Get(Item -> Stack-Number)

Bounded. Push
* (ThisElement -> User Element,

Into This Stack -> Stacks (StackNumber) .all)

when Pop n>

Text _IO.Put("stack (1-")
IntegerIO.Put(Item n> NumberOfStacks, Width -> 0)

* Text IO.Put(")
IntegerIO.Get(Item -> StackNumber)

©1986 EVB Software Engineering, Inc.

283

Bounded.Pop (TopElement ->UserElement,

Off This Stack ->Stacks (Stack Number) .all)
TextI01.Put("Top elemennt was);

IntegerIO.Put (Item ->User-Element, Width ->0);

when Empty -

TextIO.Put ("stack (1-N)
Integer IO.Put (Item ->NumberOfStacks, Width -> 0);
TextIO.Put(") :U)
Integer IO.Get (Item ->StackNumber)

if Bounded. Is Empty
(This Stack -> Stacks (StackNumber)-.all) then

Text IO.Put_Line("That stack is-empty.");
else

Text IO.Put Line("That stack is NOT empty.")
end if:

when Elements ->
TextIO.Put("stack (1-")
Integer_I0.Put (Item ->NumberOfStacks, Width -> 0)
TextIO.Put(") :);
I! teger IO.Get (Item ->StackNumber)

* TextIO.Put(nNumber of elemnts in that stack is "
A Integer IO.Put

(Item -> Bounded-NumberOfElements

Width- -> 0()In_-This Stack -> Stacks (Stack Number).all),

Text IO.Nev Line;

when Top ->
Text IO.Put(stack (1-0)
Integer _IO.Put (Item -> NumberOfStacks, Width ->0)

TextIO.Put("): 0;
Integer IO.-Get (Item -> StackNumber);

Text_-IO.Put ("Top element is);
Integer IO.Put

(Item -> Bounded.Top-Pf
(This_-Stack- Stacks(StackNumber) .all),

Width -> 0)
Text IO.New Line

* when Peek ->
Text-IO.Put("stack (1-");
Integer IO.Put (Item -> NumberOfStacks, Width -> 0)
Text-IO.Put(w) :") ;
Integer _IO.Get (Item -> StackNumber);

4' Text IO.Put ("Number of elements in that stack is "

Integer 10I. Put
(Item -> Bounded.Number_-Of_-Elements

NY (InThis StackZ -; Stacks (Stack Number) .all),
Width -> 0)

* TextIO.NevLine;

@1986 EVB3 Software Engineering, Inc.

284

TextIO.Put(rwhich element? "
Integer IO.Get (Item -> ElementIndex)

TextI0.Put("Peeked element is "

Integer 10. Put
(Item ->Bounded.Peek

(At_-Element ->ElementIndex,

in_-Thi3-Stack ->Stacks (StackNumber) .all),
Width ->0);

TextI0.Nev Line

when Equal ->
TextI0.Put("first stack (1-");
Integer IO.Put (Item ->NumberOfStacks, Width -> 0) ;
TextIO. Put (") :"
Integer IO.Get (Item ->StackNumber)

TextI0.Put("second stack (1-") ;
Integer IO.Put (Item ->NumberOfStacks, Width 0) 0)
Text_16O.Put (-) :U)
Integer IO.Get (Item ->SecondStackNumber)

it Stacks(StackNumber) .all -
Stacks (SecondStack Number).all then

* TextI0.Put_*Line("Those stacks are equal.")
also

Text IO.PutLine ("Those stacks are NOT equal.");
and if-;

when Clear -

Text -I0.Put(0stack (1-");
Integer _IO.Put (Item ->NumberOfStacks, Width ->0)

Text IO.Put(O) :"
Integer -IO.Get (Item ->StackNumber)

Bounded.Clear(ThisStack -> Stacks(StackNumber) .all)

when Copy -

TextIO.Put("source stack (1-")
Integer _IO.Put (Item ->NumberOfStacks, Width -> 0)
TextIO.Put(") :"
Integer IO.Get (Item ->StackNumber) ;

* Text IO.Put (Odestination stack (1-");
IntegeI O.Put (Item ->NumberOf_Stacks, Width -> 0)

4 Text IO.Put(") :");
Integer -IO.Get(Item ->SecondStack Number)

Bounded. Copy
(This_Stack ->Stacks (StackNumber).all,
Into ->Stacks (Second Stack Number) .all)

when View ->
TextIO.Put(ftstack C1-")
Integer I;_.Put(Item ->Number OfStacks, Width ->0)
TextIO.Put(") :*
Integer IO.cGet (Item ->StackNumber)

01986 EVB Software Engineering, In~c.

285

Display(This_-Stack -> Stacks(StackNumber) .all)

when others ->
Text IO.Put ("Thia comm~and):
CommandIO.PUt (Item => UserCoummand)
TextIO.Put Line(n is not implemented.w)

and case

exception
when Bounded.Overf low -

Text IO.Put Line("OVERFLOW was raised.")

when Bounded.ElementNotFound ->
TextIO.PutLine(" ELEMENTNOTFOUND was raised.");

when Bounded.Underflow =>
TextIO.PutLine("UNDERFLOW was raised.")

when Text IO.Data Error =>
TextIO.PutLin-e("Incorrect cormmand. Reenter.");

when others ->
* TextIO.PutLine("Unknown exception raised. Reenter.")

end

end loop TestStack;

end;

except ion
when others ->

TextIO.PutLine("Unknown exception reached the main program.")
Text IO.Put Line ("PROGRAM EXECUTION IS TERMINATED.");

end BoundedStackFirst Test;

@1986 EV13 Software Engineering, Inc.

286

separate (BoundedStackFirstTest)
procedure Display (ThisStack : in Bounded.Stack) is

-displays the contents of a given stack

-Written by J. Margono, and reviewed by B. D. Balfour, E. V. Berard,
-and G. E. Russell.

-- Author Revision Date Reason

-J. Margono 1.0 22 Jan 1986

-(c) 1986 EVB Software Engineering, Inc.

begin -- Display

Text IO.PutLine("Stack contents :n);

* DisplayElements:
for Index in 1 .. Bounded.

NumberOfElements
(InTisS-tack -> ThisStack) loop

Integer _IO.Put(Item ->Bounded.

Peek (At -Element ->Index,

InThis Stack ->This Stack),
Width ->0);

TextIO.NevLine;

end loop Display-Elements

and Display

C1986 EVI3 Software Engineering, Inc.

287

11611111 i'D i

with Bounded Stack ;
with TextI0 ;
procedure SecondTestOfBoundedStack i

-- This program unit shows how a stack data structure can be used to
-- evaluate simple POSTFIX expression (also known as REVERSE POLISH).
-- Second TestOf Bounded Stack will first prompt the user for a file
-- name of a data file that contains postfix expression separated by
-- carriage returns. These expressions should only contain single-
-- digit numbers and the following operators: 4+, u-", *, "I", and
-- "$" (exponentiation). Also, there should not be any SPACES between
-- operators or operands. Examples of valid postfix expressions
-- 1. 98+42*/89-+ (i.e., (%9+8)/(4*2))+(8-9)
- 2. 344+* (i.e., (4+4)*3

-- SecondTest_OfBounded Stack will output the following after each
- -- successive iteration through the main loop (see code below):

-- CURRENT SYMBOL read from the input, VALUE OF LEFT OPERAND,
-- VALUE OF RIGHT OPERAND, and CONTENTS OF STACK.

-- Written by Johan Margono and reviewed by B. Balfour, E. Berard,
-- and G. Russell.

Version Author Date Reason

-- 1.0 J. Margono 8 Jul 1985

-- (c) 1986 EVB Software Engineering, Inc.

package New Stack is new Bounded Stack (Element -> Integer) ;
package Number_10 i new Text IO--Integer_10 (Num -> Integer) ;

OperandStack : NewStack.Stack (Maximum-Length -> 80) ;
Left_Operand : Integer :-0 ;
Right Operand : Integer :- 0 ;
Symbol : Character ;
Result : Integer :-0 ;

FileName : String (1 .. 80) ;
Length : Natural ;
MyFile : TextIO.FileType ;

procedure Display Content3s_Of (Thi3_Stack : in New-Stack. Stack) is

-- displays the contents of a stack showing stack elements from
-top to bottom

begin -- DisplayContentsOf

for Element Index in 1
New- Stack. Number Of Elements

* (InThis_Stack -> This Stack) loop

Number IO.Put(Item -> NewStack.Peek(AtElement -> ElementIndex,
In This Stack -> This Stack),

Width -> 3);
Text-IO.Put(") ;

end loop;

01986 EV13 Software Englneertng, Inc.

288

end Display_ ContentsOf;

function SymbolToNatural (Symbol in Character) return N4atural is
-Returns th~e integer representation of a character which
-represents a decimal digit.

begin -- SymbolToNatural

return Chrce'Pos(Symbol) - Character'Pos('0')

end SymbolToNatural ;

function Is -Digit (Symbol :in Character) return Boolean is
-- Returns True if the argument is a character which represents
-a decimal digit.

begin -- Is Digit

return Symbol in '0' .. '9'

end Is Digit;

* begin -- SecondTestOfBounded Stack

TextIO.Put (Item ->Enter file-name "
Text -IO.Get_-Line (Item ->FileName, Last -> Length);
TextIO.Open (File ->My File,

Mode ->TextIO.InFile,
Name ->File7Name(1 . Length))

while not Text_-IO.End_-Of_-File (File ->My__File) loop

-- display header
Text IO.New Line
TextIO.Put (Item -> SYMBOLw);
TextIO.Set Col (To ->15) ;
TextIO.Put (Item ">LEFT OPERAND");
TextIO.SetCol (To ->30) ;
TextIO.Put (Item -> "RIGHT OPERAND")
TextIO.SetCol (To -> 45) ;
Text_10. Put (Item -> "RESULT")
TextIO.SetCol (To -> 60) ;

Text IO.PutLine (Item -> "STACK");
06 while not Text IO.EndOfLine (File -> MyFile) loop

Text IO.Get (File -> My_File, Item -> Symbol)

* if 13-Digit(Symbol -> Symbol) then

NewStack.Push(ThisElement -> Symbol To Natural(Symbol),
IntoThisStack -> OperandStack)

0180 -- symbol Must be an operator

New Stack.Pop (Top_ .Element -> RightOperand,
%W,~

C 1986 EVB3 Software Engineering, Inc.

289

OW011 'l119

OffThisStack -> OperandStack) ;
NewStack.Pop (TopElement -> Left Op'erand,

Off_This_Stack -> OperandStack) ;

case Symbol is

when '+' ->

Result :- LeftOperand + RightOperand ;

when '-' =>

Result :- LeftOperand - RightOperand ;

when '*' ->
Result :- LeftOperand * RightOperand ;

when '/' >
if RightOperand /- 0 then

Result :- LeftOperand / RightOperand
else

Result :-0 ;

and if;

when '$' ->

Result :- LeftOperand ** Right Operand

when others -><' null;

end case;

NewStack.Push (This Element -> Result,
Into-This Stack -> OperandStack) ;

end if

Text IO.Put (Item -> Symbol) ;
TextIO.SetCol (To -> 15) ;
Number IO.Put (Item -> LeftOperand, Width -> 3)
Text IO.Set Col (To -> 30) ;
Number IO.Put (Item -> RightOperand, Width -> 3)
Text _I.SetCol (To -> 45) ;
Number IO.Put (Item -> Result, Width -> 3)
Text IO.Set Ccil (To -> 60)
DisplayContentsOf (ThisStack -> OperandStack)
TextIO.NewLine ;

end loop ;

Text IO.Skip Line (File -> My File)
New Stack.Pop (Top Element -> Result,

Off This Stack -> Operand Stack)
A TextIO.Put (Item -> "Final result ") ;

JA ,Number IO.Put (Item -> Result)
Text _IO.New Line

%4 -- re-initialize operands and result
ALeft_ Operand :- 0 ;

Right Operand :- 0 ;

@1986 EVB Software Engineering, Inc.

290

in I SOFTWARE TEMBNLOGV FOR ADAPTABLE RELIARLE SSTEMS 4/4
(STARS) WORKSHOP MARCH 24-27 1986C1U) NAVAL RESEARCH LAS~ UHCLA ~ WASHINGTON DC MAR 86

UNLSIFIED F/G 12/5 UL

1.01

1.251 11.81.

G3 MICROCOPY REfSOLUTION TEST CHART

NATIONAL BUREAki OF STANDARDS- 1963-A

Result :0;

and loop;

TextIO.Close (File -> My File);

end Second TestOfEoun~dedStack

C1986 EVS Software Engineering, Inc.

291

mo

Bibliography

[V,1985]. EVB Software Engineering, An Object Oriented Design Handbook for Ada
Software, EVB Software Engineering, Rockville, Maryland, 1985.

(Knuth, 1973]. D.E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algoridhms, Second Edition, Addison-Wesley, Reading, Massachusetts, 1973.

@1986 EVB Software Engineering, Inc.

292

101 1R 1 1 1 11

Bibliography
[Alexandridis, 1986]. N.A. Alexandridis, "Adaptable Software and Hardware: Problems

and Solutions," Computer, Vol. 19, No. 2, February 1986, pp. 29 - 39.

[Bauer and Wossner, 1982]. F.L Bauer and H. Wossner, Algorithmic Language and
Program Development, Springer-Verlag, New York, New York, 1982.

Blank and Krijger, 1983]. J. Blank and M.J. Krijger, Editors, Software Engineering:
Methods and Techniques, John Wiley & Sons, New York, New York, 1983.

[Boar, 1984]. B.H. Boar, Applications Prototyping, John Wiley & Sons, New York, New
York, 1984.

[Boehm-Davis and Ross, 1984]. D. Boehm-Davis and L.S. Ross, "Approaches to
Structuring the Software Development Process," General Electric Company Report
Number GEC/DIS/TR-84-B 1 V- 1, October 1984.

[Booch, 1982]. G. Booch, "Object Oriented Design," Ada Letters, Vol. I, No. 3, March-
* April 1982, pp. 64 -76.

[Booch, 1983] G. Booch, Software Engineering with Ada, Benjamin/Cummings, Menlo
Park, California, 1983

[Booch, 1985]. G. Booch, "Dear Ada," Ada Letters, Vol. IV, No. 6, May-June 1985, pp.
21-26.

[Campos and Estrin, 1978]. LM. Campos and G. Estrin, "SARA Aided Design of
Software for Concurrent Systems," in AFIPS Conference Proceedings, Vol. 47,
1978.

[Dijkstra, 1968]. E.W. Dijkstra, "Structure of the "rHE'-Multiprogramming System,"
Communications of the ACM, Vol. 11, No. 5, May 1968, pp. 341-346.

[DOD, 1978]. Department of Defense Requirements for High Order Computer
Programming Languages: "Steelman", NTIS Order Number ADA059444, 1978.

[1O1, 1981]. British Department of Indudtry, Report of the Study of an Ada-Based System
Development Methodology, Department of Indudtry (UK), 1981.

[EVB, 1986] EVB Software Engineering, An Object Oriented Design Handbook for Ada
Software, 1985

* [Freeman and Wasserman, 1982]. P. Freeman and A. I. Wasserman, Software
Development Methodologies and Ada, Department of Defense Ada Joint Program
Office, 1982.

[Goguen, 1986] J.A. Goguen, "Reusing and Interconnecting Software Components,"
Computer, Vol. 19, No. 2, February 1986, pp. 16 - 28.

01986 EVB Software Engineering, Inc.

293

Q I11 1 1

rHanson, 1983]. K. Hanson, Data Structure Program Design, Ken Orr and Associates,
Topeka, Kansas, 1983.

[Hibbard et al, 1983]. P. Hibbard, A. Hisgen, J. Rosenberg, M. Shaw, and M. Sherman,
Studies in Ada Style, 2nd. Edition, Springer-Verlag, New York, New York, 1983.

[IEEE, 1983]. IEEE, IEEE Standard Glossary of Software Engineering Terminology,
The Institute of Electrical and Electronic Engineers, New York, 1983.

[Jackson, 1983]. M. Jackson, System Development, Prentice-Hall, Englewood Cliffs,
New Jersey, 1983.

(Jackson, 19851. M.I. Jackson, "Developing Ada Programs Using the Vienna
Development Method (VDM)," Software Practice and Experience, Vol. 15, No. 3,
March 1985, pp. 305 -318.

[Jones, 1980]. C.B. Jones, Software Development: A Rigorous Approach, Prentice-Hall,
Englewood Cliffs, New Jersey, 1980.

[Jones, 1983]. T.C. Jones, Editor, Tutorial: Programmer Productivity: Issues for The
Eighties, IEEE Catalog Number EHO186-7, Computer Society Order Number 391.

* (Kernighan and Plauger, 1978]. B.W. Kernighan and P.J. Plauger, The Elements of
Programming Style, 2nd Ed., McGraw-Hill Book Company, New York, New
York, 1978.

[Knuth, 1973]. D.E. Knuth, The Art of Computer Programming, Volume I/Fundamental
Algorithms, 2nd Ed., Addison-Wesley, Reading, Massachusetts, 1973.

[Knuth, 1974] D.E. Knuth, "Structured Programming with GOTO's", Current Trends in
Programming Methodology Vol. 1, Prentice-Hall, Englewood Cliffs, New Jersey,
1977

[Ledgard, 1975] H.F. Ledgard, Programming Proverbs, Hayden Book Company,
Rochelle Park, New Jersey, 1975

[Masters and Kuchinski, 1983]. M.W. Masters and M.J. Kuchinski, "Software Design
Prototyping Using Ada," Ada Letters, Vol. H, No. 4, January-February 1983, pp.
68-75.

[Myers, 1976]. G.J. Myers, Software Reliability: Principles and Practices, John Wiley &
Sons, New York, New York, 1976.

[Myers, 1978]. G.J. Myers, Composite/Structured Design, Van Nostrand Reinhold, New
York, New York, 1978.

[Newsted et. al, 1981] P. Newsted, W. K. Long, J. Yeung, "The Impact of Programming
Styles on Debugging Efficiency", ACM SIGSOFT Software Engineering Notes
,Vol. 6, No. 5, 1981

[Nissen and Wallis, 1984]. J. Nissen and P. Wallis, Portability and Style In Ada,
* Cambridge University Press, Cambridge, United Kingdom, 1984.

01986 EVB Software Engineering, Inc.

294

CParnas, 1972]. D.L. Parnas, "On the Criteria To Be U~sed in Decomposing Systems Into
Modules," Communications of the ACM, Vol. 5, No. 12, December 1972, pp.
1053-1058.

(Ross et al, 1975]. D. T. Ross, J. 13. Goodenough, and C. A. Irvine, "Software
Engineering: Process, Principles, and Goals," Computer, May 1975, pp. 65 - 75.

(StL Dennis et al, 1986] R. St. Dennis, P. Stachour, E. Frankowski, and E. Onuegne,
"Measurable Characteristics of Reusable Ada Software," Ada Letters, Vol. vI, No.
2, March, April 1986, pp. 41 - 50.

(Shankar, 19821. K.S. Shankar, "A Funtional, Approach to Module Verification," IEEE
Transactions on Software Engineering, Vol. SE-8, No. 2, March 1982, pp. 147 -
160.

[Wirth, 1971]. N. Wirth, "Program Development by Stepwise Re finement,"
Commucations of the ACM, April, 1971 pp. 221 - 227. Reprinted in E.
Yourdon (ed), Writings of the Revolution, Yourdon Press, New York, New York,
1982.

(Yourdon and Constantine, 1979]. E. Yourdon and L.L Constantine, Structured Design:
Fundonemtais of a Discipline of Computer Program and Systems Design, Prentice-

* Hall, Englewood Cliffs, New Jersey, 1979.

© 1986 EVB Software Engineering, Inc.

295

001

a.a

0

'C 4J

a0 4 ,

00 E

C a b.a 60

0 0 c

0..

E%4

E- h

I0(4 U
0

297 hi

00

C-C)

0: w

00

>0

w LiJ w a:-
a:c 0

U-

L2.2 w

U)r 0 c
oU -

E
*) 000

E0

298

uJ

4c 0 0

t- z LU
>

LU z .~ i
ui 4-)

be n L.

L - < LU O

*L (X LU .

3L J U. i CL
wt 0

Lai~ ~ ~ tdm 0 0 (A.(u0 =) dc c
3L 0 LII CI() L Z LU I- m j D- '

ui 0 = = -= U.. 0 0
LAJ c r a. a. Cfl LL r-

EU LL w m 0 w - (12 L

I , CaLU 0 I- -o A :- (3l = . 11 LU - .
0o (_ 3L -J 0)< =>

I- -L U LUJ - .. O
0 LU>a

-0 i
43 0 z L -L 0- - L

LU 0i 0 OLL C0U

A- C be . Z C' U L Z J L
0 ~ U 3 ~ ~ 3 W 0 0 0

o- 3CC' 0 W I

0-

299.

~~HARRIS

Government Informadon Systems OMilon

Software Operation

AMS DESIGN EMPHASIZES

o Flexibility and Adaptability

o Automation

* a Reusability

- Human Interface Function

- Screen based Application Support System

- Data base muanagement function

- - Source Analyzer Program (SAP)

- Report Generator Function

-U-CA.N USE Graphics Package

300

HUMAN INTERFACE FUNCTION

Sftwfare Operaco

Level I AS kLiaM hba

A) Forms Entry
9) Aulomabc Dat Collcti
C) Repors

PF2) HI4
PF3) Ejit AMS

Enterf Option or Command Srg:

Type of Form

A) STARS vvdrs-af
8) Softmwu 434" (Aopuim only an

Rman"M 0)

PF2) fto
PI3 TO Aeiari 1 AMS Mai Mona
Ent Opti or Commanid Srwg

A

Levl 3 AM4 Warlwee EnrI
STARS MiII vrieglel

A) liequsg F0iSalyssvlom Phase

0) Detailed Dwer
E) Cadm4In T"ain
F) CSC T
G) CSCIlling
M) Sys~t IntWa~an Twsesa
I) sysaf Peraya

PI2 Hafo
PI3 TO A@ow l A MS Man Mewa

301

0'I

HARRISE HUMAN INTERFACE FUNCTION

Government Infornalon Syuitems omalon

Software operason

Leve 3 me Yktshet £ntly

STARS meft Vwduom

A) Pro Full Scale Ovvelopmart Pi-aa
9) Req.JM~Wf Mal.ys ph"a
C) Prlmmary Oesign
0) 0mthiled Dssi
E) Cd.Jt es"r
F) CSC interabon Tmtr'g
G) CSCI Tan-9
H) SYSIAM integralen Testin
1) System Ptrfoqmar,

PF2) Ho
PF3) To ReM bMlIS Main Mom~

(SYS1BM)

Does &C -0 test clocumontalon have somrale
volumes or S.earatofte wmtrn a "I*gt volume1

- ksed om system hocors? 9moab

6.h. bd
(SYSTIM)
Are all t lesoftware Istiftp wluded in f
software documnteor

EPA1. Promeear" EIffecvernm

(SYSTEM .cTA6 her
How many Ofthwof overlays am uaed in to

sy~mcursor
I orwa

302

.0

:0 °

0',

00

I ,, ,+. +,m;m.€+ , e,,a-

CM

Ix-

zC

0

L.CL

oD LU
0. 20

o -- --

cc ~~ t> - W - 0- >

304

9A C

um

4A4

or 0
c r p"

ccu mj

z>

"S305

A' ink

30

0 iii

iI
II

ili

a. 0
c

E A

307

0 -

goP

013 a- @0
'a Z 64 @

W) I

U)A 14 w0 'a A
U) z :.

E-3 .3u

I" C
'a0

a' 0 0 0'

308 '

w . LU

2c z
C) L -

V i- -J

o *c w
-L (n LU a

LU0 'w CL -

Zn F- LA 0. L
0 w 0CL 9
-L&J =f LL w-

9- 0 CA C-

0)0 0 CL o I.- 0
Z 3- x x w 0 1--

-L UJ w I- I- =

z I. z
4c LU 00 C 0

(n~ 0 = I-

W U 0 (1 w w =
LL LLU uJ =U I. L UL - 0 ZL

w w U k w 9- w.

i I 0 L U. LL. LA. LL.
a LJ g= 0 0 0 0 0

- - 0

U. J LU) LU

ai 0- 1- -

is. A C60

am Cl

30

U.MUM

LJA7

u.'

N.

6r

V)

iILai

L310

6L

0

E HARRIS
Government Infornaon Systems Dmsloa

Softwve Operalo

C31 ENVIRONMENT MEASUREMENT INSTRUMENTATION

TASKS

TASK I: EXANINE SOFTWARE DEVELOPMENT LIFE-CYCLE FOR

ORIGIN OF DATA ITEMS.

1. AUTOMATABILITY ANALYSIS

2. SCENARIO PREPARATION

TASK 1I: DETERMINE AND DESCRIBE INSTRUMENTATION MECHANISMS

ACROSS LIFE CYCLE.

1. MECHANISM DETERMINATION

2. DATABASE SIZING/ARCHITECTURE
3. DATA ANALYSIS

TASK III: Top LEVEL DESIGN OF ALL DATA WRITTEN MECHANISMS

1. OPERATIONAL CONCEPTS DOCUMENT

2. SYSTEM REQUIREMENT SPECIFICATION

3. SOFTWARE OPT LEVEL DESIGN DOCUMENT

3

311
0e

0i

p LLI

I CL

L)

<
0

u-i to o
LLJ ui-i -ia:

CLQ--

LIJ

7 > U-

z Im-

LLaJx <
LU LL)

=11 c-J --i
*L.

U)3Q2
0L

C

2c CD

CIO) z

ui LU i CL

I-)- C

l4 0 LUJ

LULU

0
LU

<I<

0u

00

42

54)

41 u
z 0 .0

-4 %3 0)Cto 0

14 Ai -4

-1U -4 0i4 i

-4fi E-41Cih

O Eu 41

E. i 44
E4U'E'.

(Ioo'4 h
04' 1E

C 314

I - jjjj I II

STARS

BUSINESS PRACTICES MANAGEMENT

WORKSHOP

DOD-STD-2167 SOFTWARE DEVELOPMENT STANDARDS
PACKAGE DEVELOPMENT AND OPEN ISSUES

0

Los Angel.s. CA
11-22 November 19S

Ole Coubietnlkov
Chairman, EIA DOD-STD-SDS Review Committee

Vice-Chairman. COOSIA Task Group 21-13 on DOD-STD-SDS
General Electri€ Company

Syracuse, New York 13221
Phone: (315) *54-4744

315-0.

CONTENTS

Abstract

Biography

Introduction

Section 1. Overview of the SOS Package and]Development Process

A. The Problem and1 SOS Objectives
B. The SOS Package
C. The SOS Package Development Stages
Do A Broadly Based Public Review and Parldpstion Process
E. SOS Package Evolution
F. The Issue Driven Approach

*Section 2. The Issue Driven Approach OIDA)
A. Defense Standards Requirements
B. A Systematic Approach
C. Due Process and Consensus Development
D. Efficiency and Effectiveness of the Volutary Standards Process
E. Active Versus Reactive Standards Development
F. Technology Transistioning From R&D to Battle Operational

Environment

Secti on 3. SOS Deftlopment Issues

A. Issue Status at the Beginning of COOSIA Review (Cycle 3)
B. Issue Status at the Point of SOS Package Initial Release
C. Limited Coordination anod Proposed Changes

Section 6. SOS Implementation and Plana for Revision A

A. Gvervnent DOD-STD-2167 Implenmnation Ptens
IL B Industry DOD-STD1167 Implem-entation Plans
C. Assessment of SOS Interim Release
D. SOS Revision A Overview and Milestones
E. Summary of Open Issues
F. New Revision A Initiated Isse

Sectioan 5. In Summary

A. SDS Package Assessment
B5. Acki-owledgementa
C. Conclusions
0. Recommendations

References

316

0IFMk Kn

DOO-STD-2,7 SCTVARE DEELOPMENT STANDARDS PACKAGE
DEYELOPMENT AND OPEN MSUES

'IChairman, F.LA DODoSTDoSD$ Review Committee

Vice-Chairman, COOSIA Task Group 21-83 on DOD-STD-SDS
General Electric Company

Syracuse, New York 13221
Phone: (315) *-4744

AMSTRACT

This paper is based on extractions from the- CODSIA Task Group 21-13 Report
on the DOD-STO-2167(SOS) Package Coordination Review.' I

The development of DOD-STD-2167 Software Deelopment Standards (SOS)
Package is one of the moast complex and comprehensive stmdards development
efforts undertaken by the Department of Defense and the defense industry. The
SOS Package development spans a 6 lear period from April 1979 through 3une 1 5
with implementation and revision efforts projected into the next decade. Over 300
individuals and I30 corporations and Government components participated in this

.w joint effort consisting of three Government sponsored workshops, five Industry (EiA).4, sponsored workshops, and three review cycles containing approximately 12,000
[review comments. The DOD-STD-2167 development is .a significant departure from
1;' a conventional defense standards development approach and can be used as a future

model for improving standards development process in the mission critical computer
resources area.

% The evolution of the SDS Package is based on an Isue Driven Approach (IDA)

which Jocuses on the root causes of the review comments rather than fixing on the
apparent problem. IDA considers conflicting goals, as well as alternative methods
of solution starting from raw comments, to root concerns, to basic issues. Once
an issue is identified, it remains on the list, permitting traceability. and follow-up
to assure its continued resolution. This ilssue-diven approach makes the integration
of conflicting factors mamageable through an Incrementally evolving negotiation
process between DoO and industry representatives.

The DOD-STO-2167 Standards Package was released for Doo-wide use on 4
3une 1915 and is based on final or interim soiutlons to 35 issues extracted from
12,000 raw comments. Out of this total, Revision A work is continuing on 13
issues with interim solutions, which require extensive research and development.

I' Many of these open issues are Identical to those being addressed by the other DoD
* software initiatives: Ada, the STARS Program, and the Software Engineering

Institute (SEI). Therefore, it Is recommended that these initiatives should
participate in the 3oint Logistic Commanders/Computer Resources Management
(3LC/CRM) SOS initiative so as to accelerate the resolution of these longer term
SOS issues.

* This paper discusses the 3LC SDS Initiative and it elaborates on the iLae-
driven approach by describing the concept and providing the status and description
of the 5 issues encountered during the DOD-STD-2167 development. This
discussion also provides plans for the resolution of the Revision A open issues and
the implementation of DOO-STD-2167 in the DoD and industry.

Copyright (c) 1985 by Ole Golubjatntkov and COSIA Task Group 21-83

317

BIOGRAPHY

Ole Golubiatnikov is the chairman of the EIA DOr)-STrJ-SDS Review
Committee and the vice-chairman of the Council of Defense and Space Industry
Associations (CODSIA) Task Group 21-83 on DOD-STD-SOS Software Ievelopment
Standards. He was responsible for conceiving and introducing the issue-driven
approach to defense standards. He is also the editor and principal contributor of
the COOSIA Report on DOD-STD-2167 and has made numerous contributions to the
standard, including Appendix 0 on tailoring and proposed Appendix E on system
engineering integration of prime and critical items. Over the years, Ole has
participated in practically all DoD mission critical computer and software
initiatives in an Industry leadership role. lie is an EIA representative on ANSI X3
and a U.S. delegate to ISO/TC97lSC7 on design and documentation of Computer-
Based Systems.

Mr. Golublatnikov was the principal contributor and editor of the CODSIA
Task Group 13-82 Report an DoD Mknazement of Aission-Critical Computer
Resources to USD (R&E) and the principal industry reviewer of the)O Comprnuter

-. Technology Report to Congress and its Study Anne%. He has contributed many
innovative solutions to complex technical, management, and acquisition issues and
has supported in setting the stage for a new direction In Dar) computer policy to
maintain United States' defense computer technology leadership. The above
described COOSIA Task Group 13-42 recommendatIons and activities led to the

* formation of Dol's Computer Resources Council (CRC) and Defense Computer
Resources Board (rCRB). Ole was also Instrumental in the formation of the
STARS 3oint Industry Interface Working Group and the Computer Systems Interface
Working Groups.

During recent years, he has participated as a member of CODSIA, EIA, NSIA,
and Navy task groups, and is a senior member of IEEE, the Computer Society and
ACK. As a result of his GE and industry association activities, he has reviewed
plans or participated in practically all recent l'Dor computer technology, policy and
standards initiatives.

Mr. Golubjatnikov Is a consultant for data systems architecture and the
management of computer resources. His current assignment includes the
development and strategic planning of surface ship ASW systems and computer
resources, and the development of GE's software support environment based on Ada
and DOD-STD-2167. He has published numerous reports and c iputer and software
conference papers.

Ouring his career, he has been involved with more than one hundred real-time

* computer systems and distributed computer networks for commercial and military
applications. He was responsible for the conception of the radar peripheral

architecture of the AN/TPS-39 which is the baseline for GE's Solid State Radar

Family. Prior to rejoining GE in 1977, he was president of COWTA, Inc. and an

independent consultant for a period of six years specializing in computer

architecture and real-time data systems and software for industry, business, and

defense applications.

Wr. Golubjatnikov has been associated with the computer field since 1930 as

an undergraduate student at the University of Illinois, working on the ILLIAC and

ORDVAC computers. lie was the Nlnager of GE's M-600 military computer

product line peripheral equipment engineering. lie has been engaged in the

development and design of twelve commercial and aerospace computers and

* associated peripherals and software products for GE and lIoneywell, including

vJ- M-236, M-605, M-625, MULTICS, 2416, MQX, nN-35, FCAN, MK-500, AOP, FFP
and MCF.

318
0o

IIT ROUCT JON

This paper will review the SOS process and the lessons learned as they relate
to future defense standards developments. The issue-driven approach will be
described, as well as a review and description of the plans for DOD.STD-2167
implementation and the resolution of Revision A open issues. Towards this goal,
this paper is presented in the following live sections:

1. Section I provides an overview of the SOS Package development
process.

2. Section 2 -describes the issue-driven approach.

3. Section 3 -reviews the status of the 55 SOS development issues.

4. Section 4 - describes the 3olnt Logistics Commanders/Computer
Software Management C3LC/CSM) Subgroup and Council of Defense
and Space Industry Associatioris (COOSIA) Task Group 21-43 plans
for the resolution of Revision A open Issues and DOD-STD-2167
implementation.

5. Section 3 - summarzes the results of the 3LC SDS Initiative,
acknowledgements, conaclusi ons, and recommendations.

319

6'I

.0 _, I. , . .'m,= im,

SECTION I. OVERVEW OF THE S[PACKAGE AND ITS DEVELOPMENT
PROCESS

The SOS Package has evolved through 3 public review cycles, and 13
document versions with 12,000 comments and 33 issues addressed. It has been a
massive effort based on the best of Government and Industry voluntary standards
participation and contractor's efforts. The total effort is estimated at $10 million
with a 50150 split between voluntary efforts and Government funding. The process
contains lessons learned and sets a standard for the improvement of future defense
standards development efforts.

This section defines the defense software standards problem, provides an
overview of the SDS development process and characterizes the evolving SDS
product.

A. THE PRCOLEM AND SD 063ECTYES

Mission-Critical Computer Resources (MCCR) are a key element within modern
defense systems. Efficient and effective development and management of these

resources is fundamental to system development, interoperability and longevity -

three key factors which will determine the success of our defense in coming years

N and its cost. 2

0 In the mid-1970s. studies were conducted by the DoD Indicating serious
performance problems, schedule slippage, and cost problems with practically all
major weapon systems. Much of this was directly related to software associated
with the defense systems.

Following these studies, a uniform computer resurce managemnt policy,
DODD 000.29 and DOD 3000.31, was Introduced by OS covering all DoD
embedded computer applications. The implementation of this policy in MCCR
management and the HOL development and usage enforcement has been reasonably

successful. The other areas targeted for correction wores (I) improved

coordination of DoD software R&D, which has since evolved Into the STARS
Program and the Software Engineering Institute, and (2) software development

standards.

Current generation of D0D software development stndards such as MIL-

STD-1679 and MILSTD-490 have evolved ad hoc over a period of two decades. A

number of defense system and software problems In the 197Os nd early 19S05 are

traceable to. problems with software acqulsition, development, and support olicies
and standards. These problems Includes

, Service and agecy unique

0 Inconsistent terminaolo and requirvmentS

", o Neglect of variou aspects of softwae acquisition development and

support

* * Incompatibillty with modern method of developing softw e

• Prescribed requirements which am WtuPPOtd OY documentation

1 • Requirements often established by Implication

320

o Requirements which are subjective and cannot be easily measured

o Not designed for tailoring as a function of project size or software
category

Conflicting, redundant, and In some cases, nonexistent software development,
acquisition, and support policies and standards frequently result in:

* Confusion in the program office

* Duplication of effort

* Contractors maintaining multiple management systems

o Adding unnecessary costs to the software acquisition process

" Inability to focus and apply software R&D efforts and accelerate
technology transfer and Insertion

The 3LC software standardization propwan objectives were Jointly developed
by DoO and industry participants during the Monterey I workshop. These objectives
produced a complete and consistent set of tr-service software acquisition,
development, and support policies and standards which:

o Establish a well-defined and easily understood software acquisition
and development process

o Provide, adequate visibility during software development and
acquisition

o Reduce confusion and eliminate conflicts In existing standards

o Are compiible with modern methods of developing software

* Provide cost benefits over the entire life cycle

o Increase probability of obtaining quality software

I. THE SOS PACKAGE

A multi-service group In the DoO, the 3ont Logistics Commanders (LC), is
developing a new software development standards package. This package is the
result of the initiative undertaken by 3LC/3oint Policy Group on Computer
Resource Management (3LC/CRM) in April 1979. The following actions were
identified by the LC Workshop, Identified as Monterey 1:

I. Develop a general trl-service policy framework for software
acquisition that addresses the entire software life cycle and
provides uniform terminology and definitions.

2. Develop uniform military standards for use by all services and
agencies consistent with the policy framework.

3. Define and develop a comprehensive set of DIDs for all services
and arncies which support the acquisition policy and standards.

The work initiated at Monterey I culminated In the release of the Software
Development Standards (SDS) Package 4 3une 1985 which consists of:

I. 3oint Regulation, Management of Computer Resources in Defense
Systems

321

01

2. DOD-STD-2167, Defense System Software Development
3. An integrated and tallorable set of 26 Data Item Descriptions

(DiDs) grouped into four areas:
0 3 management DiDs
o 9 design documentation DIDs
* 4 test documentation DIDs
o 6 support documentation DIDs

4. Updates to software aspects of the following three existing
standards:
o MIL-STD-433A, Configuration Management Practices for

Systems, Equipment, Munitions and Computer Programs
" MIL-4TD-490A, Specification Practices
" MIL-STD-I1?l8, Techncal Reviews and Audits for Systems,

Equipments and Computer Programs
An additional component of the 3LC software standards package Is the draft

DOD-STD-2163, Software Quality Evaluation and Its 2 associated DIDs.
C. TIE SD PACKAE DTLCPM.HT STAGES

During the evolution, from 1979 through 193 the SOS Package progressed
through the following stages and steps:

I. 3LC Monterey I Workshops April 1979
2. 3LC Monterey 1111 Workshops 3wne I"I
3. Draft DIDs (TRW) and standards (DRC) developments 1920-1922
4. Draft Review (Cycle Ot 3une 19112 to May 13

" First Government/industry review
" EIA Dallas Workshops September 1922
" EIA and 3LC/CSM review meetings
" Docun ent set rew rites

3~. Select Panel Review (Cycle Ah May 1911 to 3anaumry 1"6b
o EIA and Select Panel Review:- May 1923
o Select Panel Meetings May 1963
" EIA Los Angeles Workshops 3iun 1983
" EIA Phoenix Workshops September 1993
" COOSIA Task Group 21-43 formations September 1923

* o 3LC Orlando I Workshops October My5
" Document set rewrites: 3une to December 1923

6. CODSIA Review (Cycle Ab 3wwuary IN14 to 3une 1933
0 Formal coordination review: 3anuary-Aprl 198

322

o CODSIA and 3LC/CSM review meetings and workshops

o EIA Tampa Workshop: September 1914

o Document set rewrites: June 194 to May 1953

o DMSSO review, approval and distribution: January to June
1993

The standards package dated June 1923 was released for DoD-wide use in
3uly. With the completion of Review Cycle 3 and release of the standards
package, the following two parallel stages of DOD-STD-2167 development are
underway:

7. D00-STD-2167 Implementation In DoD and industry

o EIA St. Louis Workshops September 1923

. DOO-STO-2167 Revision A planning and development

o EIA St. Louis Workshops September lS5

D. A BROADLY BASED PUBLIC REZIE ANro PART"-PATIN PROCESS

DOO-STO-2167 Is applicable to the complete software life cycle and the full
range of Jefense software applications. For example, it addresses defense software
in full-scale development, as well as firmware and reusable or commercial
software. It has many complex Interfaces to related engineering disciplines,
including project management, system engineering, configuration management, and
quality evaluation. This complex scope and nature of DOD-STD-217 dictates the
need for broad public review and participation by all segments of DO and Industry
affe;ted by the standard.

The Industry participation from Monterey I thraugh CODSIA Review Cycle 3 is
summarized in Table I-1. While a total of 69 corporations participated In some of
the SOS development and review activities, six corporations (GE, IBM, Logicon,
Sperry, TI, and TRW) participated In all six workshop and reviews. Boeing, DRC,
Hughes, Singer, and SOC participated In five of the SDS activities. The
corporations listed represent practically all major segments of defense software
applications and a number participated throu#h more than one Industry association
as indicated In Table I-I. In some cases, different divisions of the same
corporation are represented In different industry associations, and thus have
submitted a unique set of review comments. In other cases, the same set of
review comments was submitted to more than one Industry association. These
redundant comments were deleted during the review process and do not appear in
the statistics. The CODSIA coordinated review process considered all comments
reprless of souce or statistical significance.

L SS PACAGZ EY.UTIC N

Thirteen drafts of the SOS Paciage were developed by the contractor (DRC).
These drafts were reviewed by industry, DOD components, 3LC/CSM Subgroup,

* CODSIA, DMSSO, and EIA SDS review committee during the three review cycles as
summarized in Table 1-2.

During review cycle I, the rework of the SOS Package by DRC was based on
DoODcomponents and industry detailed comments. Little use, if any, was made of

323

- -x - - - - ~ x xxx W;-

mal
£ K K M M K

49x Axx;a c rz ot

o ox

0

L u

K XV K K E

- - - - - --x -x

ele Kx x K KN Kx Kx K K

30p 3

U -z

S32

Ag' x K ?c xK ; x

*t 2
-m - X- - - -C - -* x x

2U

ItE
K K K *xxx XK

5 0o

x U'xxxWX x

-to

-og- - --- - -

3E Z KL IK IK M KWH KK K

F325

TABLE 1-2
OVERVIEW OF THE SOS PACKAGE EVOLUTION

Document Set Version Reviewed By

Review Cycle is
April 13, 1"2 Draft Review Industry DOD Components

Review Cycle 2t
April 193 Select Panel Review Select P & ERA 3LC/CSM
3uly E0, 1933 EIA 3LC/C5M
August 31, 1913 EIA 3LC/CSM

Review Cycle 3%
December 3, 193 - Formal Review Industry DOD Components
May 1994 - Issue Resolutiono COOSIA 3LC/CSM
3uly 1914 - Issue Resolution * COOSIA & EIA 3LC/CSM
October 19S3 - Issue Resolution* COOSIA .3LC/CSM, DOD
December 15, 19S - Issue ResatutIon CODSIA (Observer) JLCJCSM
3anuary 15, 1913 - Refinements* CODSLA (Advisor) JLC/CSM
3anuory 30, 1983 - RefinementsO CODSIA (Advisor) 3LC/CSM
May 1993 - Refinements DMSSO
3une 4, 1983 - Formal Release DMSSO

NOTE: lorking drafts for incremental Isu resoulatn. A limited number of
working drafts were distributed for Industry review.

the guidance provided by the EIA 13 major Ium and tte. A A I 6ections and t3
concerns. Due to the complexity of. the Issues and' the approach used, little
progress was made during the first rework cycle to address Industry's concerns. To
arrive at a standard acceptable to Industry and to keep abreast of rapidly movrin
software technology required a different appoech. The .isme-driven approach was
proposed by EIA and adopted by 3LCICSM during the select panel review meeting
24-26 May 193 and subsequently used during review cycles 2 and 3.

Further, If the standard, was to be developed In a timely, technoiogy
responsive manner, close cooperation between the 3LC/CSM Subgroup, the CODSIA
Task Group, and the SOS development contractor was mandatory. -uch an iterative
and cooperative resolution of Isas was not Implemented during the draft review
cycle I and resulted in a failure to resolve critical Iues Identified by EIA and
AIA. During subsequent review cycles, on assl Tment from the 3LCICSM Subgroup,
DRC successfully recorded the essence of the Iterative negotiations between the
Government and industry (COOSIA) representatives m the complex isues under
discussion. As a result, during cycle 2 and 3, they were able to adjust the wording
In the standard, DIOs and related docurments to correspond with the agreements.
This critical contribution to the process should be recognlind for subsequent
Revision A and future defense standards activities.

IF. AN ISSUE DI]EN REVIEW APCACO

The evolution of the SOS Package Is based on an.imue-Drien Approc* (IDA)
which was conceived, by the EIA SOS review task grov-" chairman, Ole
Golubjatnikov from General Electric in 3une 1992 and applied during the EIA DOD-

326

STD-SDS workshop3 in Dallas, Texas, September 20-26, 1982. The approach was
subsequently adopted by both ILC4 , 5 and theselect panel during the second review
cycle in Wilmington, Mass during May 1983. During the third review cycle, IDA
was further refined by COOSIA Task Group and JLC/CSM Subgroup. The adopted
review approach is further described in Section 2 of this report.

The list of SOS issues evolved during the three review cycles as shown in

Table 1-3.

TABLE 1-3

SUMMARY OF COMMENTS PER CYCLE AND ISSUE EVOLUTION

Review Cycle Raw Comments Issues
(Per Cycle) New Cumulative

Cycle I
EIA 1370 3150 13 13 (EIA)
Other 3510J It (AIA)

Cycle 2
EIA 763 II 24
JLC Select Panel - Is 42

* Cycle 3
Industry 2420 314$ 2 44 (Begnnilng of cycle)
DOD 3401 I 35 (End of cycle)

TOTAL 11,129_

The irtial set of 13 Issues was Identified by the EIA Dallas Workshop 3 during
cycle I. In a similar vein, the AIA cover letter to 3LC/CSM during cycle
review identified IS general Issues. These two lists had a high degree of
commonalityt the original list was expanded to 42 during the select panel review
cycle 2. At the completion of COOSIA review cycle 3, a total of 55 issues had
been identified and addressed. This list of Issues is discussed in Section 3 of this
report.

327

SECTION 2. THE ISSUE DRYVEN APPROACH ODA)

A successful standard In an area of rapidly ,noving technology must be
technically sound, adaptive to changes In technology , and broadly supported by a
wide variety of developers and users.

DOD-STD-2167 Is such a comprehensive standard, resulting from the Joint
efforts of the DoD and the defense Industry. DOD-STD-SDS development process
Is bgsed on IDA and represents a significant departure from the conventional
approaches to defense standards developrent. The IDA addresses five fundamental
Issues Inherent In defense standards development procesm

o A systematic approach to Isoue resolution In a complex and rapidly

moving technology area.

o Due process and consensus development.

o Efficiency and effectiveness of voluntary standards process.

o Active versus reactive sandards development

o Accelerated technology transitioning from R&D to battle operation-
al environment.

This section will describe the IDA concept and mmmarLze the lessons learned
In applying IDA during the DOD-STD-2167 development process. The IDA concept
can be further refined based an lessons learned and used as a model for the

*,, development of future standards In the MCCR area, such as the computer systems
Interface standards proposed by Oe CODSIA and Ow Defene Computer Resources
Board (DCRB).

A. .EMt STANDAR 3UBE(IZ T3

Properly conceived and useable standards are essental, both In the private
sector and In defense, to cope with Inicressing wr, hcal complexities. Software
development standards, in particular, are becoming Importunt as a means to
mitigte problems encountered In software development and the acquisition and
operational use of computer based networks, systems and products. This
observation Is supported by the rapidly acceerating software standards development
activities In the early 19209 with such national voluntary standards bodies an MEF
and ASTM, and international bodies, such as S0m nd 1EC.

As U.S. defere postue Is critically depandent en software and reiti"S
defense systens automatitn, It Is Imperative that the DoO mantn a natlonal Nd
International leaders*p position In soft-sre standwds ceaopnent S+dch is a

complex and extremely slow pra . The adoption of natiom and Internatlil

5 standards, while consistent with DoD policy an voluntary stndards, would elay 0W

Introdction of modern software onginerIng practicas In U.S. defense syster by
5- 10 years. The development of modern software engineering prctice aind
standards, and the resulting leadershlp In software engineering, Is "d t to

the United States defense sMtagy ed s the forc multiplier cct pt nd,

* therefore, must be agressively pursmd.

4 must Beyond commerclal softwre 4reu lmentu, Ow defense sotareM glmdrds

must also emphasize areas unique to Ow defense sytms, such as security Md

phased acquisition life cycle of deferns systems. At this am time, the defM e

328

0

Software standards should maintain compatibility In direction with national voluntary
standards in areas such as commercial and reusable software and coding standards.
Additional defense software requirements also exist internationally to assure
compatibility with standards within the NATO defense alliance.

IL A SYSTEMATIC APPROACH

The IDA focuses n Ow root of the public review comments rather than fixing
only the locally apparent problems. It considers conflicting' goals, as well as
alternative methods of solution starting from -ow comments, to root Concerns, to
the basic Issues. Once an Issue Is Identifled, It remains on the list, permitting
traceability and follow-up to assure Its continued resolution. The IDA makes the
complex process of Integrating the iverse and conflicting factors manageable
through an Incrementally evolving negotiation process. Further, this method
provides a meech4nin to assure currency with rde ology and ctanges In policy and
business practice. The IDA is based on three major activities:

0 Analysis of raw comments and bottom-up synthesis of concerns and
issues.

o Top-down analysis and resolution of Issues and coreltilon with
other Issues to resolve conflicts and asure overall compatibility.

0 Review of detailed comments for each sectJon and paragraph, and
* implementation of action Items resulting from Issue resolutions

which Is accomplished by rewriting affected sections and paragraphs
of the standards and DIDs.

• ', The five levels of the IDA structual concept Is depicted In Figure 2-11
fundamental issues, Issues, subisies, concerns and. comments. The number of
elements at all five levels at the end of COOSA review cycle are summarized in
the figure. As the IDA stricture Is fundamental to the approach, the individual
levels are defined next.

1. FUNDAMENTAL ISSUES

These broad and pervasive Ismss are the primary MCCR life cycle cost and
schedule drivers and are the basis for many industry's objections to any standard,
including DOD-STD-SDS. They ares

o Significant and unnecessary cost escalation (cost drivers)
o Unnecessarly constraining an restrictive
o Isolation of software from the defense system and system

engineering process

o Excessive data requirements

Generally little corrective action can be taken at the fundamental Issues
level, as these Issues are too broad and pervasive. The fundamental issues are
mapped into a number of different Issues at the next lower level.

2. ISSUES

Issues are manageable areas of dispute, concern Or controversy as grouped by
life cycle, technology, methodology or project management considerations. They

329

we - - M- UTR w- Ir w 111 w UW S W w --- -un -~ n~- - ~-.

SDS DEVELOPMENT APPROACH

(DRIVERS)

I "ISSUES 55
z E

4 0 SUBISSUES -
4A &

Sw

o # CONCERNS (PER CYCLE) 242
0

COMMENTS (PER CYCLE) I coo#

SOS DEVELOPMENT IS BASED ON TOP DOWN ANALYSIS

AND BOTTOM-UP COMMENTS DISPOSITION

FIgre 2-1. SOS Development Approach

330

frequently correspond to general or essential comments received during the SDS
Package review. A total of 33 issues were identified during the three CODSIA

NO. % review cycles. These issues are discussed in Section 3 of this report. Most
complex SDS issues cannot be resolved at the issue level but must be further
subdivided into subissues for their resolution. Issues represent a permanent
structure and are continued through the different SDS review cycles to verify their
closure or to provide for future technology insertion and changes.

3. SUL8SSUES

Subissues are the logical substructure of the more complex Issues.

4. CONCERNS

Concerns are collections of related sets of detailed SDS review comments
received for each review cycle. They exist only for the duration of the specific
review cycle. They are frequently related to a specific SDS section and paragraph.
Concerns may be used for making implementation changes to a specific SDS
paragraph or mapped into the permanent structure of subissues, where they become
part of an issue which may relate to a large number of paragraphs cutting across
different standards and DIOs.

3. COMMENTS

Comments are fthe detailed raw comments received during the SOS review
process. They are usually referenced against a specific paragraph of the standard
or DID. Frequently, comments are only symptoms of the more basic Issues which

- cut across the standard(s) and the DID(s).

C. DUI R PUZ. AND W45VOW DEVELCMIEW

The development of complex defense standards In areas of rapidly moving
technoloLy is a significant technical and mnangement challenge. The standard must
not only be technically correct and dynamic but must also be broadly accepted and
supportad across a wide spectrum of defense applications and functionally different
viewpoints.

Defense standards are usually drafted by a single Indlvidual, a single
contractor, or a single service or agency companent. For example, the DOD-
STD-2167 draft was developed by DRC and the original set of DIDs by TRW.
Much less frequently the standard is developed by a Do or Industry worldng group
or a Joint 0o.0 and industry working gruip. The writers frequently lack the broad
spectrom of viewpoints and experiences necnry to draft a technically sound and
broadly Kapprted standard capable of Implementatlon across a wide and diverse
range of applications. (The early drafts of DOD-STD-2167 and the related DIDs

% are good examples.) It Is questionable that any single individual or a single
organization can produce an acceptuble document in Isolation.

* The development of a draft defense standard Is followed by O cordnatlon
review process. Industry and DoO comments received during the coordination
review fall into two categoriess general and detailed. The detailed comments are
referenced against a specific section and paragraph, while general comments
frequently have no paragraph level references.

' ,'331

A"%

The comments received are usually processed by the same individual or

organization (having a single viewpoint) which drafted the standard Initially, wi'th no
or limited independent checks or balances provided by the system. The specific
comments are processed by rewriting the referenced paragraphs of the standard.
General comments are usually too difficul for corrective action and are frequently
discarded by the process as too broad or too difficult to resolve.

As was vividly demonstrated during the first review cycle of SOS, the abov;
&escribed approach In the case of complex itandards In a dynamic technology area
can result in a failure of the system to address the substantatlve Issues contained
In the large number of conflictirg and competing comments. It Is In this area that
the joint steering and negotiation process by 3LC/CSM subgroup and COOSIA Task
Group made a major contribution during the COOSIA review cycle. In identifying
Issues, resolving conflicts and developing broadly based solutions and thus providing
guidance and steering to the SOS contractor developing OW detailed implementation
of the standard and the related DIs, a significant Improvement was achieved in
the consensus development process.

The second major contribution to the SOS prcess was the Informal a- .ptlcn
% by 3LC/CSM Subgroup and COOSIA Task Group the broad principles used by the
%, ANSI standards development process to assure due process ard Industry and DoD

.'b consensus. These principles are summarized below:

o Due Process

- Everyone with Direct and Material Interest
- Rilit to Express a Viewpoint

- If Dissatisfied, to Appeal Any Point

- Equity and Fair Play

o Consensus
i Substantial Ag eement

- More than a Simple Majority
- Not Necessarily Unanimous

- All Views and Objectione Considered

'"Concerned Effort Made Towards Their Resolution
""Formal Voting Evidence If Required

o Other Corsiderations
0- Conflicts Resolved With O1htr ReLated ODeer Stanrds

.- , Avoid PrprLat ry and Product Bias

D. EFFICENCY AND EFlCTMYEP S C THE VU.IMTAIZY STANCA2W
PROCSS

* The following activities and principles reflect he '10 o f ow C or have
contributed to the improved efficiency and effectiveness of 0h IOD-STO-SOS
development process

I. SELECT PANEL ?.1VXWS

"

332

Premature release of draft standards for general public review and
coordination should be avoided. The use of joint inodustry and DoD Workshops or
sected working groups to review the early drafts of the standard avoids a large

number of unnecessary comments during public review and the related processing
costs and time delays. Such working groups need to be carefully composed to
represent a balanced cross section of the Industry.

L. USE OF CCOJTRAC1ORS FOR STANDARDS DEY!LOPMENT

The use of full time contractors (e.g., DRC and TRW for 000.5T-SDS) has
significantly accelerated the process of developing complex deferne standards In the
voluntary ANSI-like process.

3. USE OF DOD AND INDUSTRY STEZRINC GROUP

The use of 3LC/CSM and COOSIA Task Group as the technical negotiations
and management stering group for the O-ST0-SOS development has sigificantly
improved the quality of the standard and the Process of consenss development and
due process.

4. USE CF INDUSTRY EXPERTS

The use of Industry voiwitme experts as specific Inue coordinators and
* problem solution developers has slinficantly Improved the quality of DOD-STD-SDS

and provided the necessary technical nipport to the CODSIA Task Group. This
technical support base should be further expanded to support the Revision A
development effort.

LE ACTIVE VERSW RZACIV STANDARDS DE L NT

There are two basic approaches to standards developments active and
reactive docun entalon. Active standards ame plannsed, resulting from forethought as
to their reed and content. An excellent example of active standards development
Is Mr. Ford's dual role as an Inventor of a mechanical wagon and a developer and
promoter of traffic standards for his horseless; carriage.

Reactive standards result from" a need for some controls after fte new
Invention or product has been int.oucd. Current generation 0*0 software
standards such as MIL-STD-1679 are a good eample of reactive standards.
Software, for a long time, has been considered more of an art thin engineering

% science. Therefore, software practitioners frequently object to attempts to
establish software standards as excessve constraints to their Intellectual and
creative process. As software practice matures, and Its economic and public safety* Impacts expand, the demand for software standards Is escalating In both public and
private sectors.

As a result of DOW-TD-SDS development, a fwidamental change In defense
software standards development has occurred. The defense indutstry has moved
from reactive standards devel lnent In 1979 (Monterey 1) to active standards

*development In 19S3 (Revision A) As Is evidenced by the Issues addressed In the
Revision A effort, such an artificial inteilgence/expert systems (Al/ES), we Ame not
only correcting past problems, but are also beginning to plan standards for
advanced technology practice.3 Certainly, It Is much less costly to plan and
Implement standards along with the creation of a new product, process or

333

I i 1

technology than to have to write Standards later to solve problems created by the
flew Introduction.

There are two basic positions that defense Industry can take with respect tosoftware standards developments active and reactive participation. Traditionally,most defense standards are the result of developments by DoD personnel. The-~ defense Industry generally participates only In a reactive review me~ commentmode. The current generation DoD software develqpment s *tandards, rich as MIL-STO-1679 and MIL-STD-1644 were developed In this manner.

A wide variety of software categories, software development practices, andparticipant's viewpoints must be accommodated. No single Individual ororganization has all the required Ilouit to develop an acceptabe draft documwwent.Close and active DoD and Industry participation Is absolutely mandatory Ifstandards satisfactory to DoD user anod hulustry developer wre to be produced andkept current with dwangs In lecooeoy and business practice. Without activeIndustry participation, the software technology Is moving faster than the rate atwhich mutually acceptable standards can be developed, coordinated, and approved
by the DoD) ane.

V ~The development of the DOD-STWDS Paciap ever the laW 6 years, asdocumented in this report, Is an outstanding ewnpl* of such DOD aind defenseIndustry active participation &Wd cooperation. The Initial release of the DOD-* 5TD.62167 Package Is not a perfect doesussent, as Is evideniced by the nuimber ofopen Issues for Revision A. At the some time, a review of ofthr national andInternational software standards development projects clearly Indicates DOD-STD-2167 to be a better and more cohesive standard than any other set ofstandards currently available or In development.

DOD-STD-2167 Package aslabll*4s *. bai foundatimn for next generationdefense software standards. This towdbtion will be improwed by revisions based ontechnology evolution and Implementation experiences with the initial DOD-STD-2 167. The DOD.STD..2167 standards foundation will also be expanded as the* other DoD) software Initiative= Ado, STARS, SEI, and DARPA Strategic Computing
Program become more closely coupled with the 3LC SOS soft-are Initiative. Manyof the unresolved longer term Issues Identified during the DOD-STD-2167development will be resolved by products and R&D activities resulting from theother D*1D software Initiatives.

vr, F. TECNOLOGY TILANSITICHM4 73CM RW TO ISATTL.E CFOATXXAL
EN~MCI4WNT

* ~~COOSIA Task Group 13432 11 1r to WDV(RAE) entitled D.0 Mwaret4
Mission - Critical Computer Re.=~c observes that todmology transitioning from
K&D to battle envirornent is exceedingly Slow and a major sVA in MCCRmanagement. Timely Introduction of stanodads aind their evolution with ledviologyIs a primary vehicle for &awuing technology leadership and operational effectiveness
In the battle enviroqnent.

The IDA, as demonstrated by DOO-STD-2167 development, providesthv mechanisms for evolving defense standards as a funiction of techolog developed bythe public and private sectors. Issues such as AiIES (is2'.ws 6 fthough 60)
combined with SDS revision process and Implementation In the field provide a,

334

mechanism for technology transitioning from early guidance to preferred practice
and finally to enforced standards.

Many of the Issues Identified for DOD-STD-2167 Revision A are Identical to
the Issue$ beinj addressed longer term by the DOD software Initiatives Ada.
STARS 7 and SEI. The coupling between these initiatives and th~e 3LC software
Initiatives for Initial release of DOD-STD-2l67 was minimal due to the early stages
of these programs. As the STARS program and Owe SEI becomes operational,
considerable additional coupling and useC of tteir R&D products Is expected for
Revision A and subsequent revisions of DOD-STD-2167.

335

SECTION 3. SoS DEVELOI'MENT ISSUES

The SOS Package Is the product of an extensive public review and
participation process which required the resolution of a large number of complex
and conflicting factors. This resolution process and the detailed rationale used for
the resolution of the 33 specific issues identified during the three SOS Package
review cycles is documented in CODSIA Taysk Group 21-83 Report on the DOD.
STD-2167 (SDS) Package Coordination Review dated November 1933.

Not all of the Issues Identified during the SOS Package evolution were fully
resolved at the initial release of DOD-STD-2167. A number of Issues were
resolved based only on interim solutions. Revision A work is continuing for their
full resolution, as well as a validation that the Issues considered closed at the
point of initial release of the standards package are actually closed based on field
feedback.

The purpose of this section Is to Identify the 3 Issues Identified during SDS
package evolution and provide status as to their priority and resolution. The 53
issues are identified in Table 3-I.

A. ISLX STATUS AT THE BacGN?4ING C C051A IL,21 4CYC.E 3)

Analysis of the industry review comments at the begiring of review cycle 3
* revealed several dominant trends. In addition to making constructive comments,

the participating companies expressed their positive reaction to the successive
drafts of the SOS Package. Some respondents observed that the draft was already
technically superior to the various existing standards being imposed.

In the area of constructive criticism, one dominant thread was the conviction
that the standards would result In a significant ind unnecessary cost escalation If
released in their December 83 form. Altheugh a wriou and fundamental issue, the
COOSIA task group decided these concerns were clearly identified and remedial
action could be taken during the review process. Toward this end, the group
Identified eight primary Issues and nine secondary Ihsuis for resolution. The cost
drivers were included in the list of primary issues.

The eight primary issues and their tracking numbers are listed below in a
priority order:

- I. Issue 23t Tailoring

2. Issue 41: Software De elopment FUe (Alias Folder)
* 3. Issues 16, 17, 11, 21& Informal Testing

4. Isme 7: Ads

3. Iame Is Firmwoe

,. Isw 61 Systems Interfac and Iodation of S3ftwe

7. Issue 3: Automation

. Issue 27t Revision Sratel

'.4 Although signiflcant changes were inctporated In the SOS PSc*Te (datd
December 93) to resolve comments about SOS being too constraining and restrlctive

336

x

u -0
uK x

0

IL z

0 XX XX KX

0
31-j

ziW

D aBi
4"

2-3

w rC.-.
2 j! i n.m c.

3337

3p

0

U

= 0

CCU

0 00u U

IL C

I- -
6 I

412

1 o
Iz

- 0 1".0 3* .4w do +

~p~~*Sum a7 As338

(Issue 4), this fundamental issue was still a dominant concern among industry
reviewers whocharacterized the package as having too much how-to direction, and
verging on micromanagement in other areas. However, this fundamental issue was
considered too general for corrective action and was mapped into three specific
primary issues:

o Issue 42: Software Development Folders

o Issue 17: Informal Testing Constraints

o Issue 7 Adaf Sultability/Compatibility

By successfully addressing these specific Issues, the fundamental Issue of being too
restrictive would be substantially resolved.

Some respondents noted the trnd to isolate the sftware development and
acquisition methodology and terminology from that o general systems engineering
and system acquisition. The structure of the SDS activities (e.g., absence of
requirements generation methodology) and associated policies are perceived as
exacerbating this situation. The Task Group decided to address this fundamental
issue, which requires sigulficant work, in a future update to the SOS Package. The
decision to postpone problem solution to a future update merits some elaboration.

The COOSIA Task Group recognIded two classes of action recommendations:

1) Short term action - temporary solution to problems requiring
extensive technical work for Incorporation in the Initial release of
the SDS Package (0 3ure 1933).

2) Long term action - the final solutions to problems which require
further technical work, and which are expected to be Implemented
In subsequent revisions of the SOS Package.

The Task Group created this distinction because of pragmatic considerations
relating to the need for early release of the SOS Package versus the time and
effort required to research the changes. Therefore, a revision to the Interim
Version is essential, and the Revised Version should be Implemented within 2 years
(i.e., 3une 1917). It should also be noted that these deferred issues have not been
more effectively addressed in any existing software development standard, so the
new standard is not a regression.

The priority of the 64 Issues Identified by *the beSivring of review cycle 3
was established by the CODSIA Task Group based ors

* • The Impact of the issue on Industry practice.

* The assessment of the iss status as to its resolution based on
Industry comments received and Task Group review of the SOS
Package.

The relative priority of the Isumes, baed on the December 19$3 draft, was

cateorind an

0 Primary (3 issues)

Acas is a

339

o Secondary (10 issues)

o Tertiary (9 issues)

o Closed (13 issues)

o Remapped (4 isues)).

Issue 4 (Too constraininglrestrictlve) was considered a fundamental issue and
excessively broad for corrective action and was remapped into issues number 7, 16,
17, 18, 21 and at.

Issues 16, 17, I and 21 addresng test related Issues were collected under a

single Issue 16.

B. ISUE STATUS AT TMC PC2IT CF SOS PA4 GA DOITIAUL RELESL

The status of lams at the point of SDS Package Initial release Is summarized
In Table 3-1. The status table includes 42 issues identified during the two previous
review cycles. Issues 43 through 3 were added during rqview cycle 3. The table
identifies the COOSIA priority of all Issues at the point of SOS Package Initial
release: primary, secondary, tertiary, ar d closed. The closed Issues are subject to
validation based on field usage feedback. Partially cloed issues Indicate the
proposed resolution strategyt RevIsion A, MIL4-DBK-217, changes to other policies
and standards and revisions to lont Regulation.

0

C. LIMITED COC~ODINATIC AND PltCPCSED COAGZ.S

Three sections were added to the standard during December 191t with
essentially no industry review because these section were created at the final stage
of the review process, when time did not permit their wide circulation. The three
sections in question are:

a 3.1 Software Quality Evaluation

a 3.9.1.5 Risk Management

o Appendix D Tailoring Guidelines

The first two were prepared by the Goverrnment contrW2€f (DRC). The COCSIA
Task Group obje-2ed to their Incusion (particularly 5.3 which Is voluminous) without
adequate reviews. Those objections were overuied hwver", and the sactium were
included in the standard. The Appendix D was prepared by Mr. 0. GolubjatnikoY, a
member of the COOSIA san, but was ordy reviewe by the members of the team
before being offered to the Government for inclusal. It Is recommended that

* each of these sections be giveu paticular srutiny during u lpcomir reviews.

An Appendix E, "Applikation Guide od 2umple for Development ad Prime

Items and Critical Items that Contain Sofitwae and FinMwaer Componentse a
also prepared by the EIA members Messrs. 0. Golulatnikov and 3Um C. Hamlin of

the CODSIA team. This appendix specificlly addressed the MIL-STD-9 0 B1/h2

issue number 34 and the related isolation f software from the system engneerlng

process. This appendix was voted and wanlmousJy approved by EIA membership,
but did not receive unimous COOSIA Task Group approval id thus was not

incorporated in the inital 4 3une 1"5l release of DOD-STD-2167.

7-

V. I

340
.... . ..

* 4 2ft

SECTONe . SOS IMPLEMENTATM AND PLAN5 FOR REYE1ON A

The SOS Package was approved by DMSSO for DoD-wide usage 4 3une 195.
The smooth transitionin ; from a wide variety of currently service-unique and single
program software acquisition practices to the uniform DOD-STD-2167 practice and
its successful implementation and evolution with technology advances in DoD and
Industry depends on:

I. Training and tailored appJlcation of the standards package.

2. Field monitoring and Implementation feedback to avoid misapplica-
tion of the initial verlson of the standmrds packa;e.

3. Continued development of Improved solutions for Issues closed for
the in;tlal release based on Interim solutions.

4. Continued evolutln of the SDS Package through technolog*
Insertion from public and private developments.

A. GOVYERNW.T DOO-STD-2I67 LU,.JMffAT PLA.E

The 3LC/CSM Subgroup and the Services have Initiated a DOO-STD-2167
implementation program. The major elements are:

o 3LC/CSM Subgroup DOD-STD-2167 Implementation Concept/Strategy
S Plan

0 Servict-u.nique DOD-S, 03-2167 implementation Plans
o DOD-STD-2167 Training Coures at executive, management, and

technical levels
0 DOD-STD-2167 (MIL-HDBK-2S7) Handbook development

- DOO-STD-2167 "Help" line (with level-of-effort contractor support)
o DOD-STD-2167 Implementation Feedback Survey of current users

o DOD-STD-2167 Implementation Evaluation

o Industry and Government Briefings and Tutorials
o 3LC Workshops (Orlando 11)

As an example of the effort applied, during 1924/1935, the 3LC/CSM Subgrup
alone has given over 23 briefings and 3 tutorials to Industry and Government on
the technical aspects of DOD-STO-SDS package.

B. I4MBTUY COO-WD-2167 MPLEV NTAT3cN 1 IATIVE

To provide proper DOD-STD-2167 Introduction and asawe Its continued
evolution with technology and field feedback, the CODSIA Task Group 21-33, the
Industry associations and the Individual corporations are taking numerous actions.
The following are examples of Industry DOD-STD-2167 initiatives.

a • 3olnt Industry Conferences and Tutorials. During 194 and 19l Industry
asseciations IAiA, LIA, N L)A and proe M onai societies lEE, ACM) have held
numerous joint industry conferences focusing on different aspects of defense
software. These conferences offer papers on DOD-STD-2167 and DOD-STD-2163.
Some conferences have also offered 4-hour tutorials on DOD-STD-2167, DOD-

341

rrr ~ ~ ~ %r WWW VU VWfl*~ r - .n wy -V W W 'r ,p IFh K~ n N l M -SK M WWr W - WK WV~~~ rr ~ 'Juruu

STD-2165, and Software Standardizaton Activities. Additionally, the DPMA has

offered two-day tutorials on DOD-STD-2167 and DOD-STD-2163. EIA is also
offering DOD-STD-2167 and DOD-STD-2163 tutorials during Its annual EIA G33/34
workshops. These industry association Initiatives are epected to continue.

a EIA Worksho0p on DOD-STD-21;7 aud D0D-STD-2163 Devlopment. EIA

conducted special panels on DOD-5TI-2|67 and DOD-51D-21;3 oeveiopment during
its annual EIA G33/3' workshops In 1931, 1953, 1986, and 1985. These workshops
are attended by both Industry and Gvrernment petwoel an complement the 3LC-
sponsored (Monterey I, 11, and Orlando I) workshop an DOD-STD-SDS development.

These workshops provide an pprtunlty for Govrnmnt, Indus.try, and
academic personnel to address specific DO-STD-SDS related problems ad Issues
and participate in the DOD-STD-SDS Package development process. The IA

workshop panels are led by COOSIA Task Group members, industry association

reviewers, Government DOD-STO-SOS contractor and 3LC/CSM Subgroup personnel
and provide an excellent forum for resolution of problems and development of
recommendations to the software standard. The:e anual workshops are expected
to continue.

0 Industry U oade ofon-louse. Software Standarda nd ProcUre. A

number of co panies have already looptea, on a v00jntary ass, LC)D-5TD-21i7 as
their in-house software development standard. These companies have acted as

[* DOD-STD-2167 test beds and provide useful feedback to the SOS Package
development during the sec and third review cyces. More r-cently, other
companies have begn to upgrade their in-house standards and procedures to assure
comp.?lbility with b0D-STD-2167 requirenf ts for contractual compliance.

0 Industry Implementation of DOD-STD-2167 Enmhior t ,nd Autmation

Tools. Tr-service standardizaun ona angi t-mire aeveopmnent starnard with

a-consistent set of DIDs creates an environment conducive to Investments In
software development automation. A number of companies have ongoing efforts to

automate the generation of D00-STD-SDS required products. It Is ew-.-ected that

such environments and automated tools will not only be operated intern..Ay by the

major system houses, but will also be offereda products by houses specializing in

marketing software tools and envircimrnts.

C. AS355UL'IT C3 DO-STD2147 OM2 %V.*%=

The early applications of the SOS Package on Covernment proposals and

contracts provides an opportunlty for a detailed anssme ent of the package, as well

as a detailed validation of proper Implementation of he Issue resolutions. Both

* 3LC/CSM Subgroup and CODSIA are planning to establish a Joint data collection

mechanisms so that the feedback from early applications can be promptly evaluated

and the required corrective actions Initiated during the Revision A cycle.

The Implementation of joint 3LC ard COWSIA bloa resolution agreements

during the coordination review remlred a large mi ber of changes. The language

* for these changes was largely implemented by the Goverrment contractor, DRC and

reviewed by 3LC. The development of he last two versions of the documents set

* were driven by DMSSO requested changes and had no COLi-5A partIcipation.

* The development of the three document set versions prior to the last to

versions had only limited CODSIA review because CODSTA was acting only in an

342

.3.

advisory capacity. These reviews were further constrained by tight release
schedules. Therefore, with the public release of the documents, it is essential thata detailed review be conducted to validate the Issues and concerns that have been
agreed to by .3LC and COOSIA. This document provides a baseline on the status
of the specific Issue and concerns.

One corporation conducted a detailed review of the 3anuary 30, 1983 version
of the document and concluded that several of the Issues considered closed by 3LC
and COOSIA task group are, In fact, not yet fully closed. The specific Issues
involved (16, 41, 43) are prioritized as "resolved in principal but require
refinemnent.* Such reviews should be continued so that the necessary corrective
action can be taken throullf change notices or Revision A to the standard.

D. SOS RZYMiON A OVERVEW AND M31 VTHS

At the point of Initial release of DOD-STD-2l67, a numnber of Issues were
resolved on an Interim basis only subject to further R&D. This section describes
the initial CODSIA plans for the Revison A as coordinated with 3LC/CSM Subgroup.
The SDS revision process Is envisioned to be an ongoing activity leading to future
revisions.

Revision Process Drivers. The development of SOS Revision A is driven by the
following Five major sores of activities:

0 Open Issues from the coordination review (cycle 3)
a Feedback from early field usage of SOS Package
0 STARS program and Software Engineering Institute CSEI) research

and development activities
0 Ada technology and practice evolution
0 Evolution of software engineering technology and Industry practice.

The Revision A process provides an interface to thie above five major source
of activities and converts them to the evolving set of SDS Issues. The Revision A
process consists of the following fouir major activitlest

" Identification of the iss
" Analysis and resiolution of fth lasse
* Draft Revision A developmsent and coordination
" Revision A frnplementation and field feedback

Revision A MUls'tones. The Initial sa of major milestoes for the overall
Revisron Aprocess ame

0 IdentIfication of Imms

* Initia Setof ssues May123
" Formal Coordination Isses 3an-Oct 94
* Rev A Issues baseline Sept 23
* feedback fromn field Use 3une-85 - Mar 36
* CODSIA Issus Paper Oct 83
* STARS Program and SEI Requirements 1suM Oct-Dec 23

343

0Vl W11B

0n

n Vx~ f

Definition and Coordination

a Analysis of Issues

o Proposed Resolution of Issues Received from 3ul-Dec 35
COOSIA Focal Points and HQ AFSC Staff

o Analysis SOW Prepared Sept 35
o Arialysis/Revislon Contract Awarded Oct 35" EJA St. Louis Issues Workshop 16-20 Sep 15
o Analysis Completed Mar 26

o Coordination/lmplementation of Revision A

o Preliminary Draft 3un. S6
o Review/'Coordination Dec "~
o Implementation 3une 37

Revision A Pbjectives and Goals. The specific goals of the Revision A
process are:

o To validate the detalled Imlmetton~ of Is&,ues cwnsidertd to
have been closed In the Initial release of the SOS Package.

0 o To close off the open Imsar remaining from the coordination
review cycle. A nmYber of lsawis are partially closed whille other

* open Issms have been resolved based on interim solutions only.
" To provide feedback from early field usage of the SOS Package and

Implement corrective action through change naftces, Revision A and
Handhmo changes.

o To Incorporate early R&D products from, I* STARS program and

Ine aSEI. Provide STARS program irection for SDS areas requiring

tefollowing broad obectives

" Provide tachnolo~icai curency of SCS
o Accelerate software sectwology transitlen
" Improve softwar portability
" Encourage sof twa prodkitivity and autuiatli
" Support Ads Introduction
* Encourage prodictoun of qimilty softwar
" Encourage softwar, reuse

* o Improve post-deployment ovpot and !*due$ l1fe-cycle coats
* Provide flealbillty for drvaeIper Whw 2,10Mw
" Minimiz constraints of acquisitn P0" On cOntfsct.": Internal

processes wh~ile enforcing soun doilplint.

344

0
11 % 1

w

Z. SUMMARY OF CPEH MSL2

During the SOS Package evolution, a total of 33 Issues were i&.ntifled. At
the completion of the coordination review cycle, 29 of these issues are closed
while 18 are open. Practically all of the open Issues are partially resolved or have
been resolved based on Interim solutions. During the Joint 3LC/CSM and COSDIA
Task Group meeting on 3une 7, 191, the folleing summary status and CODSIA
reprioritization of open issues was documentedt

* Primary Issues Requiring R&D
" Primary Issues - Resolved in principle but

require refinement 3
" Other Primary Issues 2
o Secondary Issues 6
" Tertiary Iss

o Total Open Issues is
o Resolved Issues 29
o Issues Requiring Govt/nd Action 4
o Remapped Issues 4
o Grand To:al 3

The following four primary lsas (Including 3 Issues consolidated Into system
engineering) require considerable R&D effort

o Issues 6,10,29,5t System Engineering
o Issue 71 Ada Compatibility

- Coding Standard
- DID Tailoring0 I= 3,ue1 Firmware

0 1 s. 3 Tailoring Appendix
The following two new primary Issues are considered opens
" Issue 34: MIL-STD-*9O BI/Cl CSDS compatibility revision)
o Issue 33: Excessive data

The following three primary Issues are completely resolved In principle, but
require considerable refinement:

o Issues 16,17,11,211 Informal Testing
o Issue *I: SCF - Group
o Issue 431 SOS Encourage Automation

* The following four primary Issues relate to th SDS development process and
not the SDS product. These Ismsues are considered closed as long as the planned
SDS development process Is moving forwards

" Issue 9 Implementation
* Issue 27t: Revision Strategy
o Issue 6 DIOs to be Superceded
0 • Issue 47s Training

The following four open Issues are categorized as secondaryi

a Issue 2: Relationship to 2163 (Rewrite 3.3)

345
6

o Issue 13: New Methodologies
o Issue 44: Fragmentation of Mgrnt Plans
o Issue *8: DID Collapsing

The following five open Issues are categorized as tertiary

. Issue 3: Supportability
• Issue 3: Evolutiarury Acquisition
0 Ism I it SDS Discussion of Personnel Subsystem
0 Issue 30: Editorial
o Issue 31: Unclear

P. NEW REYVISM A W4TIATED IUES

As a result of EIA Computer Resources Wr on DO-STD-2167
conducted In St. Louis, MO., 16-20 September, 1923, an approach to Artificial
Intelligence/Expert Systems (AlM.S) In *ie DOD-STD-2167 acquisitlon environment is
recommended. The approach proposed by te EIA woshop Is to handle A/ES ass anew category of software within the DOD-STD-2167 taloring concept. To address
this proposed new category of software five new issues are proposed.

1. Al/ES' Tecwdc3l Development Methodologies are Inconsistent with
DOD-STD-2167 Ossue 36).

2. Al/ES Life Cycle Varies from Tradiltonal Osue 57).
3. DOD-STD-2167 Documentation Is Imffkielent for AlES Systems

(Issue 38).
-. New Al/ES Optimized Life CycJe Management Methods are required

(Issue 39).
5. Other AI/ES Unique Ises Osoe 60).

*'. No Al/ES comments or concerns were received Auring the three DOD-STD-SDS
review cycles. Based on lack of comments, it wu felt that tIe A/VES techviloy
practice was not sufficiently mature to Initiate guldonce or standardization or that
the volume of business is insufficient to be of concern for DOD-STD-2167 Initial
release.

This assessment wu chan~ed as a result of tIe enctlent work done by snel
2 of the EIA Computer Resources Workshop In St. Louis under tIe co-Chalrmanship
of Messrs. R.M. Bond of ARINC, G. Ilgie of Boeing Aerospace and D. Preston of
ITTRI.

* The early concluslons of the workshop panel 2 are as follows:

o 2167 Is tailorable for ALES
o AI/ES has potentially serious Impacts on DOD-STD-2167

documentation

* The primary drivers for AI/ES lncompatibillties with fe Initial release of
DOD-STD-2167 are as follows:1.'

a At Development Methodoloies, '.' - Exploratory Program m ing

346

My

- Bottom-up
- Non-Hierarchical

a Knowledge Engineering not Addressed by DOD-STD-2167
a Al Applied to Fuzzy Problems
o Executable Data/Self-Modifying Systems

L347

/1i

0i

Si

0

347/

SECTICN 3. SUMMARY
This section provides a summary of the paper including assessment of the SOS

Package, acknowledgements, Conclusions and recommendations.

A. ASSESSMENT OF SOS PACKAGE

The release of DOD-STD-2167 to DcO-wide usage represents a significant
accomplishment. Most of the objectives and goals set for the DOD-STD-2167 by
the DoO and Industry have been met. Work Is continuing to improve the standard
where issues are still outstanding or where technology is driving future changes.Field experience within the Dot and defense Industry and voluntary usage outside
the Doo will provide the final evidence of Its success.

To provide a more detailed assessment of the DOO-STD-2167 Unitial release),
the following criteria are applied:

I. 3LC SOS objectives

2. 3LC/CODSIA Issues criteria

3. EIA/ALA White Paper criterial 0

,. DODD 4120.21 Acquisition Streamlining Directive criteria I

3. General Standards Value criteria12

A I. 3LC SOS O3ECTIVES

3LC SOS objectives are sum~marized below:

Produce a complete, consistent tri-ervice set of acquisltion, development and
support standards which,

• Establish a well-defined vd eaily understood softwre acquisition
and development process

o Provide adequate visibility during software development and
acquisition

0 Reduce confusion and eliminate conflicts In existing st:r~ards

0 Are compatible with modern methods of developing software

. Provide cost benefits over the entire life cycle
S a Increase probability of obtaining quality software

The first three objectives an completed with the Initial release of ft
standard. The full attainment of the last three objectives are subject to SOS
Implementation, Revision A and the assessment of field feedback from early
applicatioms.

2. 3LC/CODSIA ISSUES CRITERIA

The assessment of the Initial release apist tie 3LCJCODSIA issues criteria
is summarized in Section a. All 55 isues have been closed or have Interim
solutions contained in the 4 3une 19S3 SDS packae. Eihteen Issues are still OP"

348

I * %

for refinements and improvements during the Revision A process. Four issues
require continued action by 3LC/CSM Subgroup during DOD-STD-2167
implementation:

o Issue 9: SOS Implementation

o Issue 271 Revision strategy

o Issue 46: DIDs to be superceded

o Issue 471 Training
All four actions have been initiated, and as long as they are continuing, they are

considered closed.

3. EIA/AIA WHITE PAPER CRITERIA

The EIA/AlA White Paper criteria are summarized below:

o Sound Discipline Without Inhibiting Effective Design

o Flexible Standard to Accommodate Software of Differing Scope and
Applications

o Development and Management Methodology Must Accommodave
* Continuing Technology Advances Without Loss of Discipline

" Provide Clear Definition of Post-Delivery Support Requirements

o Careful Integration of Diverse and Conflicting Factors

Each of the above criteria has a number of sub-criteria. 10 A review of the
, subcriteria indicates that all of them have been mapped into the 55 JLC/CSM

issues and that all of these are closed or have action items planned during Revision
A.

6. DODD I120.21 ACQUISTICN STREAMLININC DIRECTIVE CRITERIA

The nine criteria contained in DODD 4120.21 directive1 ' which apply to DOD-
STD-2167 are listed in Table I-4. The Initial release of the standard is fully
responsive to these criteria, with activities continuing during implementation and
Revision A phases.

5. Standards Value Criteria

The broadly quoted standards value criteria1 2 is listed below:
, O Standards should Educate

" Standards should Simplify
o Standards should Conserve

O Standards are a base to Certify Against

The DOD-STD-2167' and its implementation plans are responsive to all fcur
criteria listed above.

A)N

3490S

TABLE 5-I
STREAMLINING INITIATIVE CRITERIA (DODD 4120.21)

________ Criteria Supported By

3LC SDS SOS SDS Revision
Initiative Criteria Policy Packate Implementation A

I. System-Level Functional
Requirements N/A x x 3

2. Cut Off Referenced
Documents x x NIA N/A

3. Reusable Products &
Baseline N/A x x (STARS) x

4. Require Tailoring of
Stds & DIDs x x x

3. Design Trades & RIsk/
Cost Management N/A I x N/A

6. Specify "Whata,
not "How To" N/A x N/A x

7. AMSOL & DODSS ST~s &
OlDs Only x 2 N/A N/A

I. DIDs Consistent With
Task Requirements N/A • • N/A

9. Only Required Data
Ordered N/A N/A x N/A

Notes: N/A - Not Applicable x - Criteria Satisfied

B. ACNOVLEDGZMENTS

The roots of the SOS Package originate in the mid 1970s. The Initiation of
its development in 1979 by 3LC/CRM represents considerable vision and executive
level commitment. Credit Is due to the past and present 3LC/CRM chairmen
BGen. Donald Lasher, Col. 3ohn Marciniak, Capt. Dave Boslaugh, and Col. Harold 3.
Archibald.

The development of the SS Package represents a sIAficant accomplishment
by the more than 500 individuals and over 130 corporations and Government
organizations participatins In its development. DOD-STD-2167 will have a
significant impact on the $10 billion of software being developed In 195 for Ole
currently installed MCCR base of 185,000 computers. This impact will increo
rapidly as the development of defense systems software triples by the end of the

2 decade and the Industry phases over to DOD-STD-2167 practice.

The quality of the SDS Package and Its continued evoluton Is the direct
result of the IDA adopted by the 3LC/SDM Subgroup chairman Capt. Lee Cooper.
The contributions made by Capt. Cooper In the establishment of a framework of
cooperation between the DoO and Industry are absolutely critical to the successful
results produced and the contining evolution of the standards package.

*_ Further acknowledgements are due too

o 3LC/CSM Subgroup members and past and present Chairmen Lt.
Col. Oberkrom, Lt. Col. Casper Klucas, Major Larry Fry, Lt. Cdr.

350

o 3LC and EIA workshop participants and their sponsoring
organizations.

0 Industry and DOD reviewers and their organizational sponsors.

" Industry issue coordinators, special working groups and their
o ganizational sponsors.

a SOS Package development contractors DRC, TRW and Logicon and
in particular Mr. Dave Maibor of ORC.

o COOSIA Task Group 21-33 chaired by Mr. 3ir Heil of ITT and
their organizational sponsors.

o EIA C34 Computer Resources Committee chaired by Mr. 3erry
Raveling from Sperry.

The material presented in this report has been extracted from the COOSIA
Task Group Report 21-33 on the OO0-ST)-2167(S[S) Package Coordination Reviev
with lull credit due to the membeas of the Task Group.

Author's participation in the SOS Pack-age development represents a significant4 investment by General Electric In the voluntary standards process. In particular,
the resource commitment provided over the years by Messrs. F. M. Oelritz and C.
B. Clarkson was critical in the formulation of the IDA.

0 C. CONCLUWIG4S

The most sipificant concualos relatedIto the SOS product are:

1. The quality of the SOS Package, as measured by Issues resolved, Is
directly related to the voluntary effort put forth by industry and

l. ;the DoO.
2. The SOS Package Is a significant accomplishment and meets most

of the criteria established by the DoO and Industry:

o 3LC SOS objectives

o 3LCIOOOSIA Issues criteria

o [IA/AIA white paper criteria

o 13001D 41120.2 Acquliqton Streamlning Directive criteria

o General standard value criteria

Further, work is coniumin g for Improvements against the
I above listed criteria where not yet futly met.

3. SOS Package provides a standards foundation for tecmology
insertion from the other DO sotwre iniaUves Ada, STARS and
SI, as well as the private sector technology developments.

4. The ac mplishment of a single sftware development standard is

not without risks. The range of computer programs to be covered
by DOD-STD-2167 is extremely broad. Tailoring of the standard is
absolutely essential if the flexibility for spanning the wide range of
defense systems and the variations in project size and software
categories is to be aclileved.

351

The most significant conclusions related to the SDS Package developmentprocess are:

I. The IDA represents a significant change from the conventional
defense standards development process and was critical to the
quality of the DOOD-STD.2167 an its acceptance by the industry.

2. The IDA can seve as a model for the development of future
standards in the MCCR area.

3. 3LC/CRM commitment to the Revision A process and SOSimplementation plans was essential for industry endorsement of theinital release of DOO-STO.2167.

D. RJECOMMIENIDATIONS

The following are the most significant recommendations:

1. Industry and DOD should provide adeqjzate resources to complete
the planned Revision A process by 3iume 1917. The Issue resoiu-tbons should be completed by 3une 1926.

2. Industry and DOD volunteers should establish 3LC/CODSIA
coordinated working groups to address each of the Revision A open

0 issues.
3. Industry associations and DOD organizations should consider

sponsoring 3LC/CODSIA coordinated joint DoD and Industry
workshops to address the following seven major Revision A Issues:
o Automation
o Methodology

o Reusable Softvwre

" Adai
o System' engineering
o AIME
o FIrmnware

4. Industry and 000 should refine the IDA for Revision A and use It
as a model for the development 01 futswe sp-drds In the MCCA
area*

5. The coordination &Wd tectwwlogy trwiser btween the 3LC SOS
software Iidtlatlv* ud t0. other DoD softwe Initiativesa Ada,
STARS and SEI *moud be improved.

6. DMSSO 0.uid consider dmvlopng data bam, tools and network
access for the automated processing of public review Commewnts.

7. Industry and 0.0 should suppert the proposed DOD.5TD,2I67* implementation plans so that the full benwefts of the SOS Psc*P~
can be acieved In a timelIy manner.

L. Individuals Interested In participating In working groups and
organizations considering sponsoring D0STD-2167 Revision A Isaw
resolution activities sho'4d contact the ftlOwirkg:

* 352

DOD: Capt. Rick Butler or AlA: Mr. Aditin Maher
Capt. Lee Cooper Singer Kearfott Corp.
Andrews AFB, MD 20334 150 Totowa Rd
(301) 981-i3731/4 Wayne, NJ 07470
AV $59-373114 (201) 733-46(07

ElAi Mr. Ole Golubl at oiv NSIA: Mr. 3im Hell
General Electric Co. ITT Avionics
FRP 1, Room D6 100 Kingsland Road
Syracuse, NY Clifton, N3 070i
(313) 45&4744 (201) 214-2946

REFE RE N1.

I. CODSIA Task Group 21-33, Report an the DOD-STD-2167 (SDS)
Package Coordirtion Review, Washington, DC, November 193.

2. COOSIA Task Group 1342, Report to USD(R&E) on DOD Manage-
meit of Mission-Critical Computer Resources, Volume I and I
Washington, DC, March 1924.

3. EIA 1922 Workshop Panel I Report, impact of Tri-Service
Initiatives on Software Development (Draft MIL-STD-SDS
Coordination),w EIA, Washington, DC, September 1912.

0 4. CAPT Lee Cooper, "Issue Resolution Procedure," JLCICSM, Andrews
AFB, 21 3uly 1183.

3. CAPT Lee Cooper, 'Discussion of Propose MIL-STD-SDS Issue
Resolution Strategy," 3LC/CSM, Andrews AFB, 21 3uly 1"13.

L David S. Maibor, alummary of Concerns Raised for Each Issue,'(DRC, Wilmington, MA, Original issue 2 November)0, as updated
by Capt. Cooper 7 3une 1955.

7. DOD/CSSD, STARS Software Technology for Adaptable, Reliable
Systems - Defense Industry Briefing, San Diego, CA, 29 April 1983.

. Software Engineering Institute - Industry Affilates Symposiu,
Carnegie-Mellon University, Pittsburh, PA, 30 September 1915.

9. Electrmic Industries Association, Computer Resources Committee,
lth Annual Workshop Report, St. Louis, MO, 1U-20 Septmeber
1995.

10. 0SuggestJonu for DOD Management of Embedded Computer Software
In an Environment of Rapidly Moving Technology," EIA and ALA,

* Washington, DC, March 1932.
II. Draft DODD 4120.21, OAcquisitlon Streamling," DOD, Washington,

DC, 3une 1923 and associated attachments.

12. Charles D. Sullivan, Standards and Standardization, Marcel Dekker,
Inc., New York, 1913.

353

CODS IA 21-83

DOD-STD-2167 REV A PLANS

4 0. GOLUBJATNIKOV
GENERAL ELECTRIC COMPANY

VICE-CHAIRMAN CODSIA 21-83 TASK GROUP

MARCH 1986

355

COVERAGE

I REV A SCHEDULE

I TECHNICAL ADVISORY WORKING GROUPS (TAWG)

I TAWG GUIDELINES

I SUMMARY STATUS

* - ADA TAWG

- A/ES TAWG
- FIRMWARE TAWG

- SYSTEM ENGINEERING TAWG

- REUSABLE SOFTWARE TAWG

- EVOLUTIONARY ACQUISITION TAWG

- SOFTWARE QUALITY FACTORS TAWG

- METHODOLOGY TAWG

- AUTOMATION TAWG

356

DOD-STD-2167 REVISION A SCHEDULE

I REVISION A KICKOFF MEETING 15-16 JAN 1986

I CODSIA 21-83 REPORT REVIEW & COMMENTS JAN-MAR 1986

I INITIAL INPUTS FOR REV A DRAFT 15 MAR 1986

I CODSIA MEETING (CRYSTAL CITY) 20-21 MAR 1986

I CODSIA/JLC MEETING (SAN DIEGO) 9-11 APR 1986

I TAILORING WORKSHOP 15-16 APR 1986

I FINAL INPUTS FOR REV A DRAFT 30 APR 1986

I REV A RELEASED FOR COORDINATION 15 AUG 1986

1 60-DAY REVIEW COMPLETED 15 OCT 1986

1 REVISION A FINAL DRAFT REVIEW 1 JAN 1987

S REVISION A TO DMSSO APPROVAL 1 MAR 1987

1 REVISION A RELEASED JUL 1987

: 357

I--
0~ lc -

C Jk

QL CIL

'A u' r

ul

>1 - 94 .

* K \358

LLLU

I. LUj MCC

cLLJ (.0 V0 -j -j

LL - 0

- 0 2 ~ =

I- - I-- LU
4c LL .4r C/)

= ~ ~ ~ ~ - 3-c= .~ %% -

0 = ->- tm
-~LL 3 J =

-~- V) Lm I i (j

- Cl LL 4c J. J~
LU J 3- 1--) V) 0 =ul) L =

:I *A * .I * -
cn U.0

0 * * *359

I. 0 0 = -, '.

T1 ca Zviu

3 ! B a~ ~ lea
>1~~T g u h 'h '

CL l il 1 3
CD' I

S j 3

z I! 'z!
113 A*1H

- a i i zr~! III -

='3 C, I B I;

0 ill

x

(N r.. 0I w ~ C% C 0D r-. a) 90
r~e ooC LD 00 C%4 (4 N CLO

C71 (n~ P^ (~) N (N C" w 00O
*(N I4n CO. 00 a) 00 = %

P%.r. LO CI LIMu

-7 00 0 0 C%4 - 0 0

Ll-

LLU

C4 .0 f.

- U L- LaiU

*L Lm -j = C4
LOu LJJ~ U

~ 0 -0 I- l..L I-. /~ Lj./3

=C

0 --

*~A - = - I

~~~ LUj LLO U.J -l = C)

- L I- 0 -j L

0c -c LL. c LAi = V) ac

%,

36



a LLU

L61

- mC

=LL

LU U, -
- a-

LUA

0 LLL
f. LA CA

LUJ

LUL-CC 0A LjUL

0 D = C c = - L

CA = P- -

_j L6 -
-j V)LI L- (LU -j L

o1 (-j ILJ 0 D a. C4
0~ LU4n

661-L ~U C L
U, 0 - L

U, - 0~ 0- c

o U -0

w,0L U - L

- .~ ~362



CDDSIA TAWG GUIDELINES

I PRODUCTS AND SERVICES

-TAWG CHARTER

7 - TAWG MEMBERSHIP LIST

0 - TAWG MAILING LIST

-MINUTES OF TAWG MEETINGS

-ISSUES AND CONCERNS ANALYSIS REPORT

-FORMAL RECOMMENDATIONS TO CODSIA AND JLC

A 363



CODSIA TAWG GUIDELINES

- APPROACH

- MEETINGS

- WORKSHOPS

- STATUS REPORTING

- INTERIM CODSIA/JLC GUIDELINES

- COLLECTION OF COMMENTS

ANALYSIS OF COMMENTS
- COMMENTS

* CONCERNS
* SUBISSUES
* ISSUES

- DEVELOPMENT OF ALTERNATIVES AND RECOMMENDATIONS

- REVIEW OF RECOMMENDATIONS

- FORMAL SUBMISSION OF RECOMMENDATIONS

- MONITORING AND ASSESSING ISSUE RESOLUTION

o

364

I0~i



La.'

-o

C-,

LW. I LUJ
UL1 I I-

_ a-

L (L J 0 I

C-) 00

C4 00 C4 -

00 a-r
0000 LL c

L'i L J.

LJ P" LL.

LUJ

LZ

E~d LW

LLJ A=

o LLJ

365



FIRMWARE TAWG

SPONSORi AIA ECSC

DATE ORGANIZED:

* MEMBERSHIP:

PLANS: APR 1986 -- KICKOFF MEETING

366



LLU

LUL

CdC,

LID-
o 0

LAJ~

C-4-. LU
4c C..

uj0

0-0

w w

L -LM



*c

-i-

I---

-c

-JL

La.'

C-)

C,368



Cn L.

U. _j ) L.

Lo Li.J cn

cc~~ C/) ma
-c LU V.0

-4 -L - &
*J LU.. 0L C=. (d .

OC. = = 0 co _ 0

-= --- .

0 UJ
-AJ L= U =

LLUJ Cf L0 JL
-= WI . -C62~

ULLL = aj LL 0L

- D = =
0.U. CDi - ',Li

1 0.L I 0- L

0. ea I- U

*~L LL fj i. f

I.- I-.--

V-4 -N WN I- P.- w C" -j k-).

1Li = Li = I
4c~ i 0 -- I

0 -2 u i~j c',
o - L -

= 0 Li - I - 0Lii

4 f. C.'U. 'o-C

0 0 e - U 0 ~ 0L369



I

SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREF3RT DOCUMENTATION PAGE OMB No 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Publication 0120-5150

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATiON
(If applicable)

Naval Research Laboratory Code 5150 Naval Research Laboratory

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Washington DC 20375-5000 Washington DC 20375-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT iDENTIFICATION NUMBER
ORGANIZATION (If applicable)

SPAWAR
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

SDAWAR 613 PROGRAM PROJECT TASK WORK UNIT
' ' 61 ELEMENT NO NO NO ACCESSION NO

Washington DC 20363-5100 51-2259

., 11. TITLE (Include Security Classification)

Software Technology for Adaptable Reliable Systems

12. PERSONAL AUTHOR(S)

- 13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month. Day) 15 PAGE COUNT

Conference Proceedings FROM 24 Mar To 27 Mar36
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse tt necessary ano dentlty by block numOer)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Conference Proceedings for Workshop on applicaton systems and reusability (24-27 March 1986).

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION

l UNCLASSIFIED/UNLIMITED 0 SAME AS RPT C DTIC USERS I UNCLASSIFIED
NAME OF RESPONSIBLE INDIVIDUAL 22h. TELEPHONE (Include Area Code) 22c OFFICE SeMBOL

Elizabeth Wald (202) 767-3040 Code 5150
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATiON OF THIS PAG;E-

371
0



0

0

S

*

0


